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Abstract

*These notes were taken from a course by Ralph Greenburg in Spring 2015 [Grel5] on
counting points on varieties over finite fields. It also overlaps with [Ser12, Ch. VI] and [Was97|.
Any mistakes should be due to me.

1 Characters

This section will define the basic objects required for studying characters. Much of this theory
can be generalized but for simplicity we will stick to the “hands on” approach.

Definition 1.1. Let A be a finite abelian group. The dual of A to be the group A= Hom(A, C*),
that is the group of homomorphisms A — C*. This is also called the Pontryagin dual. Elements
x € A are examples of characters. In this group the trivial character yg is the map sending A to 1.

Exercise 1.2. Prove that

(a) Let x € A. Show the image x(A) is contained in the set of roots of unity:

x(A) = {zeC|z" =1 for some neZ"}.
(b) For any fixed A, there exists an isomorphism A = A.

(¢) There is a canonical isomorphism A A, i.e. the “double dual” functor is naturally isomorphic
to the identity functor on the category of finite abelian groups.

Hint. Use the structure theorem for finite abelian groups. If A is a product of cyclic groups Z/nZ,
then maps out of A are uniquely determined by where a generator in each component go. Notice
that there is a unique cyclic subgroup of order n in C*.

Definition 1.3. Let F4 denote the vector space of C-valued functions on A. Note that Ac F A.
We give an inner product to F4 by defining

1 N
{9 = 4] >, fla)g(a)

ageA

Remark 1.4. The inner product defined in [Definition 1.3 can also be interpreted as an integral. We
could instead write § 4 J1fadpa where 14 is a normalized Haar measure on A. In this case this just
means any singleton {a} has measure |T11| so that the measure of A is normalized to 1.



Exercise 1.5. Show dim¢ F4 = |A4|.
Hint. Note that F4 is arbitrary set-theoretic functions. So they are uniquely defined only by their
value on each point in A.

Theorem 1.6 (Fourier Series). The elements x € A form an orthogonal basis for Fu.

If fe Fathen f= 3 cyx.
xeA

Remark 1.7. This should remind of you Fourier series you might have seen in analysis. Just note
that the map R — C* given by x — 2™ for some fixed n € Z is a character. Use this to compare
with the standard Fourier series.

Before proving we first prove a very helpful lemma.

Lemma 1.8. Ifx € A then
Z L if x=Xxo0
|A| acA 0 ZfX?éXO

Proof. Let d be the order of x so that x? = xo. Then x(A) is exactly the d*” roots of unity (each
with multiplicity |A|/d). The sum of the dth roots of unity is 0 unless d = 1, in which case x = xo
and we have Y _, x(a) = |A]. O

Proof of|Theorem 1.6 By [Exercise 1.5|it is sufficient to show that the y are orthogonal since then
they will form an independent set of the same size as the dimension.

Let x1,x2 € A. By |Exercise 1.2| we know the image of any x € A is contained in the roots of
unity. Hence x(a) = x(a)~! for any a € A. Using this and the previous lemma we can write

X1, x2) = Z xi(a

aEA

ZXI !
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_ )1 if x1 = xe
0 if x1 # xo-

O

Theorem 1.6|gives an expansion of any element f € F4 into a linear combination er 1¢xX- But

the coefficients ¢, in the theorem can be calculated via the inner product. Fix ¢ € A and consider

the inner product with ¢ as follows
(o) = <Z cxw>
xeA

= CX 2 <X’1/}>

xeA

Z fla)p™ (a). (1)

aEA

which shows



2 Gauss Sums

In the previous section we considered characters as group homomorphisms into C*. In this
section we expand our objects from finite abelian groups A to finite fields I, where ¢ is some prime
power. The extra structure allows us to talk about additive characters (homomorphisms on [, with
the additive structure) and multiplicative characters (homomorphisms on Fy).

There is a natural action of F; on I/F;. Given b€ [y let my, : F; — [F, be the multiplication by b

map. This is a group homomorphism with respect to the additive structure. Then for v € ]?; define
b- =1y =1y omy. It’s clear this is again a character.

Proposition 2.1. Let ¥ be a non-trival character in I/F‘;. For any b1,by € Fy, if by # by then

¢b1 7 wbr
Proof.
Vo, =y, = P(ba) =P(bea) Vael,
i w((bl - bQ)CL) =1 Vace Fq

Now (b1 — ba)a varies over all of Fy; since by # ba. Since 1 is non-trivial it follows that vy, # ¥p,. O

Corollary 2.2. For any non-trivial ¢ € I/F; we have I/F; = {¢p | be Fy}.
Exercise 2.3. Prove

—~

Next we want to consider multiplicative characters, i.e. Fy, and relate them to additive ones.

Given y € ]ﬁ% we extend it to a map X : F;, — C as follows. If x # xo then
x(a) ifa#0
(a) = .
0 ifa=0
and if x = xo then we extend it by
Xo(a) =1 YaeTF,.

Warning 2.4. Note that Yg is extended differently! This will make things easier later. Also it’s
nice that it is still a constant function. Also be careful because X may not necessarily lie in F,
because it is not additive. However, X is still multiplicative so X (ab) = X(a)X(b) for all a,b € F,,.

Note that the extension X is a C-valued function on F, so that X € Fp,. So we can apply

Theorem 1.6| which says X can be written as a linear combination of the 1) € H/*’;. So by |Corollary 2.2

we have
=D, ety
belFy

for some fixed non-trivial ¢ € ]?';.
Exercise 2.5. Let x € IE% and fix some non-trivial ¥ € E’;. By above we can write ¥ = Zbqu cyWp.

(a) In the notation above, show

0 if x # xo
co =
L if x = xo



Hint. See |Warning 2.4] and compute (X, ¢9). The proof of may be helpful.
(b) Show (X, %) = X lel”.

Hint. Notice (-,-) is a Hermitian inner product on Fg,.

Definition 2.6. A Gauss sum is_the sum of a multiplicative character times an additive one.
Specifically, given x € IF* and ¢ € Fq, then define the Gauss sum to be

YY) = ). Xla)d(a).

aclFy

There are many cool things one can do with Gauss sums. Here is a small application where we
compute the absolute value.

Theorem 2.7. Let x € IE% and v € ]ﬁ';. If ¢ and x are non-trivial then |y(x, )| = \/q.

Proof. From |Theorem 1.6| and |C0rollary 2.2| we can write Y = Zbqu ey for some coefficients
cq € C.

First we will show |cp, | = |cp,| for any non-zero by, by € ;. Recall that ¥ is multiplicative, so for
any b # 0 in F, we can write

Ch = <>~<Ia ¢b>
= > Xa)du(a)

aclFy

= > X(ab)X (b~ )1 (ba)

aelFy

= > Mab)R (b~ )¢ (ba)

aely

= X(b7Y) ), Xlab)ihy(ba)

aely
= XN X )
= X(b"er

Since X(b~!) is a root of unity it follows |cp| = |c1].
Now we can show |cp| = ﬁ. Using we have

&%= Yol = (g = Dler]?

belFy

and as x is a character for F} we have

1=(xx) = IE}* > x(a)x(a)



Note: the two inner products above are for different character groups!
Together these inequalities show
1
1] = —
Va

Now unwinding definitions we have

Yoo e) = D0 | D] atula) |¢(a)

acFy \ bely
= Yl Y. dula)(a)
belF,  aclfy
= > elFy| o, v
belFy
=19
which with above finishes the proof. O

Exercise 2.8. Find the absolute value of the Gauss sum ~y(x, ) in the following cases:
* X = X0, ¥ # o
* X # X0, ¥ =10
* X = X0, ¥ = o
Hint.
e 0
e 0

®q

3 A Theorem of Gauss

Another example of Gaussian sums comes from a theorem of Gauss.

Definition 3.1. Let p be an odd prime. Define a map Z — {—1,0,1} by

1 if pta and ais a square mod p

a
a— <p) =4 —1 if ptaand aisnot a square mod p

0 ifpla

It’s not hard to see this is a non-trivial character on F extended to IFp. It is called the Legendre
symbol.

Now consider the map F, — Cx given by a — e2™a/P  Tt’s not hard to see this is a non-trivial
additive character of IF),.

Theorem 3.2 (Quadratic Gauss Sum).

pz—:l (a) p2mia/p _ \/P ifp=1 mod4
a=0 \P v-p ifp=3 mod 4.

Proof. See [Irel3, Ch. 6]. O



4 Inflation and Restriction

Next we look at the relation between characters on groups and their quotient groups.
Let A be a finite abelian group and B a subgroup of A. Given a character x € A/B it extends
to a character on A by precomposing with the quotient map A — A/B.

Definition 4.1. Let 7 : A — A/B be the canonical map and ¢ € 1?/? Then the inflation of v is
the map inf(¢)) =Y ome A. Note inf : A/B — A is indeed a homomorphism.

Definition 4.2. Let x € A. Then the restriction of x is the map res B = x|p € B. Noteres: A — B
is indeed a homomorphism.

Exercise 4.3. Show inf : m — Ais injective and res : A— Bis surjective. Then prove we have
an exact sequence

~

0 Z/\B inf A‘ res B 0.

References

[Grel5] Ralph Greenberg. Math 583C: Counting Points on Varieties. Spring 2015.

[Irel3] K. Ireland. A Classical Introduction to Modern Number Theory. Graduate Texts in
Mathematics. Springer New York, 2013.

[Ser12] J.P. Serre. A Course in Arithmetic. Graduate Texts in Mathematics. Springer New York,
2012.

[Was97] L.C. Washington. Introduction to Cyclotomic Fields. Graduate Texts in Mathematics.
Springer New York, 1997.

TRAVIS SCHOLL
Department of Mathematics, University of Washington, Seattle WA 98195
email: tscholl2@uw.edu



	Characters
	Gauss Sums
	A Theorem of Gauss
	Inflation and Restriction

