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Abstract

*These notes were taken from a course by Ralph Greenburg in Spring 2015 [Gre15] on
counting points on varieties over finite fields. It also overlaps with [Ser12, Ch. VI] and [Was97].
Any mistakes should be due to me.

1 Characters

This section will define the basic objects required for studying characters. Much of this theory
can be generalized but for simplicity we will stick to the “hands on” approach.

Definition 1.1. Let A be a finite abelian group. The dual of A to be the group pA “ HompA,C˚q,
that is the group of homomorphisms AÑ C˚. This is also called the Pontryagin dual. Elements
χ P pA are examples of characters. In this group the trivial character χ0 is the map sending A to 1.

Exercise 1.2. Prove that

(a) Let χ P pA. Show the image χpAq is contained in the set of roots of unity:

χpAq Ď tz P C | zn “ 1 for some n P Z`u.

(b) For any fixed A, there exists an isomorphism pA – A.

(c) There is a canonical isomorphism
x

xA – A, i.e. the “double dual” functor is naturally isomorphic
to the identity functor on the category of finite abelian groups.

Hint. Use the structure theorem for finite abelian groups. If A is a product of cyclic groups Z{nZ,
then maps out of A are uniquely determined by where a generator in each component go. Notice
that there is a unique cyclic subgroup of order n in C˚.

Definition 1.3. Let FA denote the vector space of C-valued functions on A. Note that pA Ă FA.
We give an inner product to FA by defining

xf, gy “
1

|A|

ÿ

aPA

fpaqgpaq

Remark 1.4. The inner product defined in Definition 1.3 can also be interpreted as an integral. We
could instead write

ş

A f1f2dµA where µA is a normalized Haar measure on A. In this case this just
means any singleton tau has measure 1

|A| so that the measure of A is normalized to 1.
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Exercise 1.5. Show dimCFA “ |A|.
Hint. Note that FA is arbitrary set-theoretic functions. So they are uniquely defined only by their
value on each point in A.

Theorem 1.6 (Fourier Series). The elements χ P pA form an orthogonal basis for FA.
If f P FA then f “

ř

χP pA

cχχ.

Remark 1.7. This should remind of you Fourier series you might have seen in analysis. Just note
that the map RÑ C˚ given by x ÞÑ e2πinx for some fixed n P Z is a character. Use this to compare
with the standard Fourier series.

Before proving Theorem 1.6, we first prove a very helpful lemma.

Lemma 1.8. If χ P pA then

1

|A|

ÿ

aPA

χpaq “

#

1 if χ “ χ0

0 if χ ‰ χ0.

Proof. Let d be the order of χ so that χd “ χ0. Then χpAq is exactly the dth roots of unity (each
with multiplicity |A|{d). The sum of the dth roots of unity is 0 unless d “ 1, in which case χ “ χ0

and we have
ř

aPA χpaq “ |A|.

Proof of Theorem 1.6. By Exercise 1.5 it is sufficient to show that the χ are orthogonal since then
they will form an independent set of the same size as the dimension.

Let χ1, χ2 P pA. By Exercise 1.2 we know the image of any χ P pA is contained in the roots of
unity. Hence χpaq “ χpaq´1 for any a P A. Using this and the previous lemma we can write

xχ1, χ2y “
1

|A|

ÿ

aPA

χ1paqχ2paq

“
1

|A|

ÿ

aPA

χ1paq pχ2paqq
´1

“
1

|A|

ÿ

aPA

`

χ1χ
´1
2

˘

paq

“

#

1 if χ1 “ χ2

0 if χ1 ‰ χ2.

Theorem 1.6 gives an expansion of any element f P FA into a linear combination
ř

χP pA
cχχ. But

the coefficients cχ in the theorem can be calculated via the inner product. Fix ψ P pA and consider
the inner product with ψ as follows

xf, ψy “

C

ÿ

χP pA

cχχ, ψ

G

“ cχ
ÿ

χP pA

xχ, ψy

“ cψ

which shows

cψ “
1

|A|

ÿ

aPA

fpaqψ´1paq. (1)
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2 Gauss Sums

In the previous section we considered characters as group homomorphisms into C˚. In this
section we expand our objects from finite abelian groups A to finite fields Fq where q is some prime
power. The extra structure allows us to talk about additive characters (homomorphisms on Fq with
the additive structure) and multiplicative characters (homomorphisms on F˚q ).

There is a natural action of Fq on xFq. Given b P Fq let mb : Fq Ñ Fq be the multiplication by b

map. This is a group homomorphism with respect to the additive structure. Then for ψ PxFq define
b ¨ ψ “ ψb “ ψ ˝mb. It’s clear this is again a character.

Proposition 2.1. Let ψ be a non-trival character in xFq. For any b1, b2 P Fq, if b1 ‰ b2 then
ψb1 ‰ ψb2.

Proof.

ψb1 “ ψb2 ô ψpb1aq “ ψpb2aq @a P Fq
ô ψppb1 ´ b2qaq “ 1 @a P Fq

Now pb1´ b2qa varies over all of Fq since b1 ‰ b2. Since ψ is non-trivial it follows that ψb1 ‰ ψb2 .

Corollary 2.2. For any non-trivial ψ PxFq we have xFq “ tψb | b P Fqu.

Exercise 2.3. Prove Corollary 2.2.

Next we want to consider multiplicative characters, i.e. xF˚q , and relate them to additive ones.

Given χ P xF˚q we extend it to a map rχ : Fq Ñ C as follows. If χ ‰ χ0 then

rχpaq “

#

χpaq if a ‰ 0

0 if a “ 0

and if χ “ χ0 then we extend it by

Ăχ0paq “ 1 @a P Fq.

Warning 2.4. Note that Ăχ0 is extended differently! This will make things easier later. Also it’s
nice that it is still a constant function. Also be careful because rχ may not necessarily lie in xFq
because it is not additive. However, rχ is still multiplicative so rχpabq “ rχpaqrχpbq for all a, b P Fq.

Note that the extension rχ is a C-valued function on Fq so that rχ P FFq . So we can apply

Theorem 1.6 which says rχ can be written as a linear combination of the ψ PxFq. So by Corollary 2.2
we have

rχ “
ÿ

bPFq

cbψb

for some fixed non-trivial ψ PxFq.

Exercise 2.5. Let χ P xF˚q and fix some non-trivial ψ PxFq. By above we can write rχ “
ř

bPFq
cbψb.

(a) In the notation above, show

c0 “

#

0 if χ ‰ χ0

1 if χ “ χ0

3



Hint. See Warning 2.4 and compute xrχ, ψ0y. The proof of Lemma 1.8 may be helpful.

(b) Show xrχ, rχy “
ř

|cb|
2.

Hint. Notice x¨, ¨y is a Hermitian inner product on FFq .

Definition 2.6. A Gauss sum is the sum of a multiplicative character times an additive one.
Specifically, given χ P xF˚q and ψ PxFq, then define the Gauss sum to be

γpχ, ψq “
ÿ

aPFq

rχpaqψpaq.

There are many cool things one can do with Gauss sums. Here is a small application where we
compute the absolute value.

Theorem 2.7. Let χ P xF˚q and ψ PxFq. If ψ and χ are non-trivial then |γpχ, ψq| “
?
q.

Proof. From Theorem 1.6 and Corollary 2.2 we can write pχ “
ř

bPFq
cbψb for some coefficients

ca P C.
First we will show |cb1 | “ |cb2 | for any non-zero b1, b2 P Fq. Recall that rχ is multiplicative, so for

any b ‰ 0 in Fq we can write

cb “ xrχ, ψby

“
ÿ

aPFq

rχpaqψbpaq

“
ÿ

aPFq

rχpabqrχpb´1qψ1pbaq

“
ÿ

aPFq

rχpabqrχpb´1qψ1pbaq

“ rχpb´1q
ÿ

aPFq

rχpabqψ1pbaq

“ rχpb´1q xrχ, ψ1y

“ rχpb´1qc1

Since rχpb´1q is a root of unity it follows |cb| “ |c1|.
Now we can show |cb| “

1?
q . Using Exercise 2.5 we have

xrχ, rχy “
ÿ

bPFq

|cb|
2 “ pq ´ 1q|c1|

2

and as χ is a character for F˚q we have

1 “ xχ, χy “
1

|F˚q |
ÿ

aPF˚
q

χpaqχpaq

“
1

q ´ 1

ÿ

aPFq

rχpaqrχpaq

“
q

q ´ 1
xrχ, rχy
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Note: the two inner products above are for different character groups!
Together these inequalities show

|c1| “
1
?
q

Now unwinding definitions we have

γpχ, ψq “
ÿ

aPFq

¨

˝

ÿ

bPFq

cbψbpaq

˛

‚ψpaq

“
ÿ

bPFq

cb
ÿ

aPFq

ψbpaqψpaq

“
ÿ

bPFq

cb|Fq| xψb, ψy

“ c1q

which with above finishes the proof.

Exercise 2.8. Find the absolute value of the Gauss sum γpχ, ψq in the following cases:

‚ χ “ χ0, ψ ‰ ψ0

‚ χ ‰ χ0, ψ “ ψ0

‚ χ “ χ0, ψ “ ψ0

Hint.

‚ 0

‚ 0

‚ q

3 A Theorem of Gauss

Another example of Gaussian sums comes from a theorem of Gauss.

Definition 3.1. Let p be an odd prime. Define a map ZÑ t´1, 0, 1u by

a ÞÑ

ˆ

a

p

˙

“

$

’

&

’

%

1 if p - a and a is a square mod p

´1 if p - a and a is not a square mod p

0 if p | a

It’s not hard to see this is a non-trivial character on F˚p extended to Fp. It is called the Legendre
symbol.

Now consider the map Fp Ñ C˚ given by a ÞÑ e2πia{p. It’s not hard to see this is a non-trivial
additive character of Fp.

Theorem 3.2 (Quadratic Gauss Sum).

p´1
ÿ

a“0

ˆ

a

p

˙

e2πia{p “

#?
p if p ” 1 mod 4

?
´p if p ” 3 mod 4.

Proof. See [Ire13, Ch. 6].
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4 Inflation and Restriction

Next we look at the relation between characters on groups and their quotient groups.

Let A be a finite abelian group and B a subgroup of A. Given a character χ P zA{B it extends
to a character on pA by precomposing with the quotient map AÑ A{B.

Definition 4.1. Let π : AÑ A{B be the canonical map and ψ P zA{B. Then the inflation of ψ is

the map infpψq “ ψ ˝ π P pA. Note inf : zA{B Ñ pA is indeed a homomorphism.

Definition 4.2. Let χ P pA. Then the restriction of χ is the map resB “ χ|B P pB. Note res : pAÑ pB
is indeed a homomorphism.

Exercise 4.3. Show inf : zA{B Ñ pA is injective and res : pAÑ pB is surjective. Then prove we have
an exact sequence

0 zA{B pA pB 0.inf res
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