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Abstract

Beginning with the basic definitions, this paper walks through the proofs that sev-
eral structures associated to hyperplane arrangements are in fact the same. The goal
is to show (in order) that the Orlik-Solomon Algebra is isomorphic to the Brieskorn
Algebra and the Brieskorn Algebra is isomorphic to the Cohomology Ring.

0 Introduction

We begin with the following basic definitions and notations: A = {H0, . . . ,Hn} is an
arrangement of codimension 1 subspaces in some l-dimensional vector space V . A will be
referred to as a hyperplane arrangement. S is the set of all tuples of hyperplanes, e.g. S ∈ S
is of the form S = (Hi1 , . . . ,Hip) for some 0 ≤ i1, . . . , ip ≤ n. The empty tuple () ∈ S is
allowed. ∩S represents the intersection of all the hyperplanes in S. A′ = {H1, . . . ,Hn} =
A \H0 is the subarrangement given by deleting the hyperplane H0. A′′ is the arrangement
induced by restricting to the hyperplane H0. It is defined as A′′ := {Hi ∩H0 | i 6= 0}.

In this paper, we restrict to central arrangements, that is all hyperplanes are actual
subspaces. This is because, among other niceties, certain definitions are easier to deal with.
For example, in a general or affine arrangement we might have ∩S = ∅ for some S ∈ S
whereas in a central arrangement ∩S is always a non-empty subspace of V . Almost all of
the theory still holds in exactly the same way for affine arrangements, only each proof needs
a minor tweak to deal with this case.

This is not a big restriction since given any affine arrangement we can take the cone
to get a central arrangement. Moreover, the cone of an arrangement contains very similar
properties to the original arrangement both combinatorially and topologically.

Definition 0.1. S = (Hi1 , . . . ,Hip) ∈ S is dependent if the hyperplanes Hi1 , . . . ,Hip are
dependent, that is their normal vectors vi are dependent.

Notation 0.2. For S = (Hi1 , . . . ,Hip) ∈ S, let rank(S) := rank(∩S) := codim(∩S).

Proposition 0.3. Dependency of S ∈ S is equivalent to rank(S) < |S|.

Proof. A point x is in Hi if and only if vi ·x = 0, where vi is any normal vector to Hi. Now
consider the matrix A with the vi as rows. Then ∩S = kerA. By rank-nullity theorem,
dim kerA = l− dim imA. From linear algebra, we know dim imA = |S| if and only if the vi
are independent.
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1 Orlik-Solomon Algebra

The goal of this section is to define the Orlik-Soloman algebra of an arrangement and
construct an exact sequence of the form

0→ A′ → A→ A′′ → 0.

Let A = {H0, . . . ,Hn} be a hyperplane arrangement. Let E be the free exterior algebra
on {e0, . . . , en}. We adopt the following notations: eHi

:= ei, eS = e(i1,...,ip) := ei1 · · · eip
for S = (Hi1 , . . . ,Hip) ∈ S.

Define the boundary map ∂ : E → E by the formula ∂eS =
∑p
k=1(−1)k−1ei1 · · · êik · · · eip

where S = (Hi1 , . . . ,Hip). Let I be the ideal generated by {∂eS | S dependent}. Notice
that eS ∈ I for dependent S as eS = ei∂eS whenever Hi ∈ S. It is not hard to see
from the definition of ∂ that it satisfies the graded Leibniz formula ∂(eSeT ) = (∂eS)eT +
(−1)|S|eS(∂eT ).

Definition 1.1. The quotient E/I is the Orlik-Solomon Algebra of A and will be notated
A.

Notice E is graded by E =
⊕

p≥0Ep where Ep is the linear span of {eS such that |S| =
p}. These are monomials of degree p. Similarly I is also graded because it is generated by
homogeneous elements. Hence I =

⊕
p≥0 Ip where Ip = I ∩ Ep. As I is a homogeneous

ideal, A = E/I inherits this grading, so A =
⊕

p≥0Ap where Ap = Ep/Ip.
For the subarrangement and restriction, A′,A′′ we repeat the constructions to get exte-

rior algebras E′, E′′ with ideals I ′, I ′′, and quotients A′, A′′ respectively.
For this paper all arrangements A will be ordered. The ordering will help organize the

algebraic structures we build and will help give geometric intuition to some of the definitions.
The ordering also gives a natural basis for E given by standard monomials eS .

Definition 1.2. A tuple S = (Hi1 , . . . ,Hip) ∈ S is standard if Hi1 > Hi2 > · · · > Hip .

Next we begin constructing the maps for the exact sequence. There is a natural inclusion
of arrangements A′ ↪→ A which induces an inclusion E′ ↪→ E. This will induce the inclusion
ι : A′ → A. First we have to show this map is well-defined.

Lemma 1.3. For S ∈ S′ S is dependent in S′ if and only if S is dependent in S.

Proof. Note that the only difference of S′ and S is that no tuple in S′ contains H0. By
definition, S is dependent if and only if the normal vectors to the hyperplanes in S have
some dependency equation. This equation is the same if S is viewed as an element of S′ or
S.

Proposition 1.4. A′ → A induces a linear map ι : A′ → A

Proof. First consider the natural inclusion E′ → E. By Lemma 1.3, I ′ is taken to I.
Therefore this induces a map on the quotient ι : A′ → A.

Now we define the surjective map j : A→ A′′.

Notation 1.5. Let λ : A \ {H0} → A′′ be the map given by λHi := H0 ∩ Hi. This
extends to a map S → S′′ given by (Hi1 , . . . ,Hip) 7→ (λHi1 , . . . , λHip). By convention, if

S = (Hi1 , . . . ,H0, . . . ,Hip) then λS = (λHi1 , . . . , Ĥ0, . . . , λHip). This means λ(H0) = ().



Travis Scholl 3

Because A is central we don’t have to worry about empty intersections or λHi = ∅. The
map we want is going to be eS 7→ eλS . First though we have to show it satisfies some nice
properties.

Proposition 1.6. There is a surjective linear map j : E → E′′ that satisfies

j(eS) =

{
eλS if H0 ∈ S
0 otherwise.

Moreover, j(I) ⊂ I ′′ so it induces a map A→ A′′. The induced map will also be referred to
as j.

Proof. The map E → E′′ is well defined since the standard eS are a basis for E and j can
be defined from this basis. Since every plane in A′′ is of the form λH for some H ∈ A, every
monomial in E′′ is of the form eλS for some S ∈ S. Therefore this map is surjective.

For the second statement, it suffices to show j(∂eS) and j(eS) are in I ′′ for dependent
S. This is because every element of I is a linear combination of eS and ∂eS for dependent
S. To see this, notice that ei∂eS = eS if Hi ∈ S and eS − ∂e(Hi,S) if Hi /∈ S.

Without loss of generality, we may assume S is standard. If H0 is not in S then j(eS) =
j(∂eS) = 0 and we are done, so we may also assume H0 ∈ S.

If the hyperplanes in S are dependent, then they are still dependent in the restriction to
H0, so λS is also dependent. Therefore j(eS) ∈ I ′′ for dependent S.

To show j(∂eS) ∈ I ′′, set T = S \ H0 so eS = e0eT (up to a sign). Then j(∂eS) =
j(∂e0eT ) = j(eT − e0∂eT ) = −∂eλT . The last equality follows because j(eT ) = 0 (H0 /∈ T )
and every term of e0∂eT is of the form ±e(H0,Tk) where Tk = T \Hk, which under j will be
exactly ±e(λT )k .

Remark 1.7. The maps ι, j created thus far are linear maps of vector spaces, not algebra
homomorphisms. They will be used in proving the algebra homomorphism created later is
a bijection.

It is difficult to show the complex 0 → A′ → A → A′′ → 0 is exact directly from the
definitions of i and j. The common practice is to build a basis for A out of nbcs (“nbc”
stands for no broken circuit). We start by building an ordering of monomials to organize E.

Definition 1.8. S = (Hi1 , . . . ,Hip) ∈ S is a circuit if {Hi1 , . . . ,Hip} is a minimally de-

pendent set. That is, S is dependent and {Hi1 , . . . , Ĥik , . . . ,Hip} is independent for any
1 ≤ k ≤ p.

Definition 1.9. S = (Hi1 , . . . ,Hip) ∈ S is a broken circuit if there exists some Hj <
min{Hi1 , . . . ,Hip} such that (S,Hj) is a circuit. S ∈ S is a nbc tuple if it does not contain
a broken circuit. Similarly, eS is a nbc monomial if S is a nbc-tuple. Both will be referred
to as an nbc.

Notice the definition of a broken circuit relies on the ordering of the hyperplanes in
A. The next step is to extend this ordering to A′ and A′′. The extension to A′ is clear.
The extension to A′′ needs some careful consideration. A nice property to have would be
λHi < λHj ⇒ Hi < Hj . However since we may have that λHi = λHj for various i and j,
this is not guaranteed from any arbitrary ordering. So first we need to choose a nice enough
ordering on A.
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We may reorder the hyperplanes so that all the Hi that intersect with H0 in the same
way are together in the ordering. This is done as follows. First pick representatives for each
distinct hyperplane in the restriction, λHk. Next partition A into sets Ok := {Hl | λHl =
λHk} for each k. Now apply any ordering to the partitioning sets Ok and any ordering
on the hyperplanes in the same Ok. Then define Hi < Hj if and only if Oi < Oj for all
Oi 6= Oj . By re-indexing if necessary, we may assume our ordering of hyperplanes satisfies
H0 > H1 > H2 > · · · > Hn.

Proposition 1.10. The ordering described above for A is well defined and induces an order
on A′′ satisfying λHi < λHj ⇒ Hi < Hj.

Proof. The induced ordering is given by the bijection {Ok} → A′′, Ok 7→ λHk. This satisfies
the desired property since λHi = λHi′ implies Hi, Hi′ ∈ Oi. Therefore, if Hi < Hj then
Oi < Oj (note λHi 6= λHj so Oi 6= Oj) and so Hi′ < Hj by construction.

The next step is to build a basis for A. We begin this by defining a graded lexicographic
ordering on the elements of S using the ordering from the hyperplanes.

Definition 1.11. Let S = (Hi1 , . . . ,Hip) and T = (Hj1 , . . . ,Hiq ) be standard tuples. Then
define S < T if either |S| < |T | or |S| = |T | and S is lexicographically before T . Define ()
to be the minimum element. To compare non-standard tuples, first put them in standard
form by rearranging, then compare as above.

Remark 1.12. The ordering described above is sometimes called “deglex”,“graded lexico-
graphic”, or “degree lexicographic.”

Why lexicographic order? Later we will want the elements ∂eS where S is a circuit to
have a leading term that is a broken circuit. To get this, we must make sure the leading
term is the one with the minimal hyperplane removed, which corresponds to the maximal
monomial in ∂eS with respect to lexicographic ordering.

Remark 1.13. In the context of polynomial algebras it is convenient to use graded lexico-
graphic instead of just lexicographic orderings. This is because any element has only a finite
number of monomials strictly lower in the ordering, making it easier for computers to make
computations in these algebras.

This induces an ordering on the elements in S′ and by above on S′′. Moreover, by
placing S, T into standard form before comparing them, this order will be a monomial order
(definition below).

The next few definitions apply to a more general setting of exterior algebras of a finite
dimensional vector space on basis e0, . . . , en (although most of the definitions make sense in
the infinite dimensional case also). When reading, it might be useful to think of the general
exterior algebra E as E and the general ideal J as I. We adopt the same notation for
elements, only in the general setting a tuple S = (i1, . . . , ip) is a tuple of subscripts instead
of hyperplanes. Here the standard tuples still make sense and still define a basis. As before,
the elements eS = ei1 · · · eip are referred to as monomials.

Definition 1.14. For an exterior algebra E on generators e1, . . . , en, a monomial ordering is
an ordering of all monomials eS such that eS ≤ eT ⇒ eSeU ≤ eT eU for monomials eS , eT , eU
such that eSeU 6= 0 6= eT eU .

Definition 1.15. Let E be an exterior algebra with a monomial order and J be an ideal of
E . The initial ideal of J is the linear span of {In(f) | f ∈ J} where In(f) is the maximal
monomial or leading term of f . It is denoted as In(J).
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It is easy to see that In(J) is an ideal. By the definition of a monomial order, multiplying
by an element of E gives 0 or preserves the initial monomial.

The following is a basic proposition about initial ideals, but very important for our
applications. We only consider the case where E is finite dimensional, which is acceptable
as E and I as above are generated by a finite number of hyperplanes.

Theorem 1.16. Let E be an exterior algebra over a finite dimensional vector space with a
monomial order and J be an ideal of E. Then the set of monomials not in In(J) form a
basis for E/J .

Proof. Suppose some non-zero linear combination of monomials not in In(J) was in J .
Then the initial term of the combination was in In(J), a contradiction. Therefore they are
independent.

To show they span, suppose f ∈ E . We have to find some f ′ such that f + J = f ′ + J
and f ′ contains only monomials not in In(J). The main idea is to slowly remove monomials
that are in In(J). Consider the maximal monomial e of f such that e ∈ In(J). There is
some g ∈ J with In(g) = e. Now consider f − g. This differs from f by an element of J and
all of its monomials that lie in In(J) are strictly lower then e. Next consider the maximal
monomial of f − g in In(J), and again subtract off an element of J with the same leading
monomial. Now continue this process until there are no more monomials in In(J). Note
that this algorithm has to end because there is only a finite number of monomials (up to
scalars) in E .

This theorem will be helpful with the following definition.

Definition 1.17. Let E be an exterior algebra with a monomial order and J be an ideal of
E . A Gröbner Basis for J is a subset B such that In(B) generates In(J).

Next we will prove that {∂eS | S is a circuit} is a Gröbner basis of the ideal I. First we
organize E by introducing a new grading.

Definition 1.18. A flat X ofA is the intersection of a subset of hyperplanes ofA. L = L(A)
will denote the set of all flats. L is often referred to as the intersection lattice of the
arrangement A.

Notation 1.19. Let EX be the linear span of {eS ∈ E | ∩S = X}. Since E has a basis of
all monomials, it is clear that E =

⊕
X∈LEX .

Let C ⊂ E be the linear span of {eS ∈ E | S is a nbc}. Note that C has a basis
consisting of monomials so it inherits both gradings from E, i.e. C =

⊕
p≥0 Cp where

Cp = C ∩ Ep and C =
⊕

X∈L CX where CX = C ∩ EX .

Lemma 1.20. For C, the grading along the flats is finer then the standard grading. In
particular, Cp =

⊕
Y ∈L,rankY=p CY .

Proof. It is enough to show that CX ⊆ CrankX . But this follows from the definition of
independent. eS ∈ CX means ∩S = X and S is a circuit, hence independent and |S| =
rankX. Thus

Cp =
⊕
S nbc

rank∩S=p

C∩S .
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Remark 1.21. While grading along flats is finer for C it is not in general for E. It is possible
for to have |S| = |T | while rank∩S 6= rank∩T and vise-versa.

Lemma 1.22. The boundary map ∂ : E → E induces a map ∂ : C → C and the restriction
to CX is injective. Moreover, ∂(CX) ⊆ CrankX−1.

Proof. For the first statement, if eS does not contain a broken circuit, then neither does
∂eS as ∂eS is a linear combination of sub-tuples of S. Hence ∂(C) ⊂ C.

To show ∂|CX
is injective let SX = {S ∈ S | ∩S = X}. Let Hi be the minimal hyperplane

appearing in SX . By definition Hi ⊃ X so for any S ∈ SX we have (∩S) ∩Hi = X.
Notice that if eS ∈ CX and Hi /∈ S, then ∩(Hi, S) = X = ∩S so (Hi, S) is dependent.

As Hi was chosen to be minimal in SX , this contradicts S being a nbc. Therefore Hi ∈ S
for all eS ∈ CX . It follows that eiCX = 0.

Now recall the formula ∂(eieS) = eS − ei∂(eS). As ∂ is a linear map, for any linear
combination c =

∑
eS∈CX

kSeS we have the same formula ∂(eic) = c− ei∂c. But by above,
eic = 0 so this equation becomes c = ei∂c. This shows if ∂c = 0 then c = 0.

Finally, as ∂ takes eS to a linear combination of eT where T is just S without one
hyperplane. If eS ∈ C then it is independent so rank(S \Hi) = rankS − 1.

Lemma 1.23. I is graded along the intersection lattice. That is I =
⊕

X∈L IX where
IX = I ∩ EX . Hence A is similarly graded, A =

⊕
X∈LAX where AX = EX/IX .

Proof. It is sufficient to show I =
⊕

X∈L IX . To do this, we have to show that every element
of I decomposes along the EX .

First consider a circuit eS with ∩S = X. Then since circuits are minimally dependent
we must have ∩(S \Hi) = X for all Hi ∈ S. Thus ∂eS ∈ EX .

Now we need to look at an arbitrary element of I. As all dependent S contain a circuit, I
is also generated by {∂eS | S a circuit}. So an arbitrary element of I is a sum of things of the
form eT∂eS for S a circuit and arbitrary T . We can rewrite eT∂eS =

∑
eT eSi

=
∑
eT∪Si

where Si = S \Hi. By above, ∩Si = ∩S so ∩(T ∪Si) = (∩T )∩ (∩Si) = (∩T )∩ (∩S). Hence
eT∂eS ∈ E(∩T )∩(∩S). This shows each part of the sum is contained in some IX .

Theorem 1.24. The quotient map π : E → A induces an injection C → A.

Proof. By Lemma 1.23 it is sufficient to check π|CX
is injective for all X ∈ L. By definition,

π(CX) ⊂ AX . Now proceed by induction on r = rankX.
The base case is when r = 0, or X = V (this corresponds to the empty intersection or

the empty tuple). Here π|CX
is just the identity on the underlying field to itself.

For the induction step, Lemma 1.22 gives the diagram

CX Cr−1

AX Ar−1

∂

π π

∂

which is commutative. Note Lemma 1.22 also says the top map is injective and our induction
hypothesis says the right map is injective. Therefore the left map must also be injective.

Theorem 1.25. The set B = {∂eS | S is a standard circuit} is a Gröbner basis of I.
Moreover, the monomials in In(B) are precisely the broken-circuits, so the monomials not
in In(I) are the nbcs. Hence by Theorem 1.16 the nbcs form a basis of E/I = A.
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Proof. To show B is a Gröbner basis we have to show 〈In(B)〉 = In(I). It is obvious
〈In(B)〉⊆ In(I) as B ⊆ I. So it sufficient to check the reverse containment.

By Theorem 1.16, the monomials not in In(I) form a basis for A under the quotient
map π : E → A. So by above, the monomials not in 〈In(B)〉 span A under π. We want to
show they are independent. Note by definition of the ordering In(B) is exactly the broken
circuits so its complement is the nbcs, C. This means E =〈In(B)〉⊕C. Thus it remains to
check π|C is injective. But this is exactly Theorem 1.24.

Corollary 1.26. The quotient map E → A restricts to a linear isomorphism C → A.

Remark 1.27. C is not a subalgebra since nbcs are not closed under multiplication.

Because H0 is the maximal hyperplane with respect to our ordering, S is broken in S′ if
and only if it is broken in S, for the lesser hyperplane creating the dependency will never be
H0. Therefore C ′ ⊂ C. Consider the map C → C ′′ given by the restriction of j : E → E′′

as before. To show this is well-defined it remains to show j preserves the “not a broken
circuit” property.

Proposition 1.28. If S is a nbc, then j(eS) is either 0 or a nbc, i.e. j(C) ⊂ C ′′. Hence
j induces a map C → C ′′.

Proof. If H0 /∈ S we are done by definition of j. So assume H0 ∈ S. Similarly, if Hi1 ∩H0 =
Hi2 ∩ H0 for some Hi1 , Hi2 ∈ S then j(eS) = 0, so we may assume λS contains distinct
elements or equivalently |λS| = |S| − 1.

Suppose j(eS) = eλS contains a broken circuit. Then there is some hyperplane Hi <
min(S) (we may find Hi ∈ S rather than S′′ by Proposition 1.10) such that (λS, λHi) is
dependent.

Now we claim (S,Hi) is dependent, which contradicts S being a nbccompleting the
proof. The reason for the dependency is that because H0 ∈ S, (∩S) ∩Hi = (∩λS) ∩ λHi.
Hence rank(S,Hi) + 1 = rank(λS, λHi). Putting these together gives rank(S,Hi) + 1 =
rank(λS, λHi) < |λS, λHi| = |S| < |(S,Hi)|. This implies rank(S,Hi) < |(S,Hi)| so it is
dependent.

Proposition 1.29. The map C → C ′′ induced by j is a surjection.

Proof. Let T ∈ S′′ be a nbc. By definition of A′′, there is some S such that T = λS. We
need to show we can choose such an S as a nbc.

For each plane H ′′ ∈ T , let Hi be the minimal plane in A such that λHi = H ′′. Let
S ∈ S be the tuple of these Hi in standard order. This construction shows T = λS.

Suppose S was a broken circuit. Then there is some Hp < min(S) such that (S,Hp) is
dependent. We will contradict T being a nbcwith the following two claims.

First is that (T, λHp) is dependent as ∩S = ∩S ∩ Hp implies ∩λS = ∩λS ∩ λHp or
equivalently ∩T = ∩T ∩ λHp. Then clearly rank(T, λHp) < |T |.

Second is that λHp < min(λS = T ). This follows because as S has the unique minimal
representative Hi for each H ′′ ∈ T and Hp < min(S), so it can’t be the case that λHp =
H ′′ for any H ′′ ∈ T . If it was the case that λHp > H ′′ for some H ′′ ∈ T , then by
Proposition 1.10, Hp > H, where H is any hyperplane such that λH = H ′′. This would
contradict Hp < min(S) by the construction of S.

The last step to showing the sequence of nbcs 0 → C ′ → C → C ′′ → 0 is exact is to
check the middle term, i.e. ker j = C ′.
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Lemma 1.30. Let S1, S2 ∈ S be nbcs with H0 ∈ S1, S2. Then λS1 = λS2 ⇒ S1 = S2.

Proof. Suppose S1 6= S2. By hypothesis, there must be some Hi1 ∈ S1, Hi2 ∈ S2 with
Hi1 6= Hi2 but λHi1 = λHi2 . Without loss of generality, assume i1 > i2. In particular, this
means (H0, Hi1 , Hi2) is dependent in S, which means (H0, Hi1) is a broken circuit. Since
(H0, Hi1) is contained in S1, this contradicts S1 being a nbc.

Lemma 1.31. ker j = C ′.

Proof. It is clear that C ′ ⊂ ker j because no element of C ′ contains eH0
so j(C ′) = 0.

For the reverse direction, suppose
∑
cSeS ∈ ker j. By definition of C ′ we may only

consider the sum over S such that H0 ∈ S.
As an element of ker j, it follows that

∑
cSeλS = 0. As the monomials eS are linearly

independent, if not all cS = 0, then there must be S1 6= S2 such that λS1 = λS2. But as all
S in the sum are distinct nbcs in S containing H0, this contradicts Lemma 1.30.

Corollary 1.32. The sequence 0→ C ′ → C → C ′′ → 0 is exact.

Proof. Combine the paragraph after Corollary 1.26, Proposition 1.29, and Lemma 1.31.

Theorem 1.33. The sequence 0→ A′ → A→ A′′ → 0 is exact.

Proof. As all horizontal maps are induced by the same maps E′
ι→ E

j→ E′′, the diagram

0 C ′ C C ′′ 0

0 A′ A A′′ 0

commutes. The vertical maps are restrictions of the respective projection E → E/I = A.
Now exactness of the bottom row follows from Corollary 1.26 and Corollary 1.32.

2 Brieskorn Algebra

The goal of this section is to define the Brieskorn algebra of an arrangement and prove it is
isomorphic to A using an exact sequence of the form

0→ R′ → R→ R′′ → 0.

From here on, we require that our arrangements sit in some l-dimensional vector space V
over C. The reason is that this turns the complement of the hyperplanes into an open subset
of complex space. Hence it has the structure of a complex l-dimensional manifold. However,
it is possible to define the Brieskorn algebra over an arbitrary field using a completely
algebraic definition of differential form (usually called “rational forms”) as in [5].

Definition 2.1. For a hyperplane arrangement A = {H0, . . . ,Hn} in a complex vector
space V , the complement M is defined as the set V \

⋃
Hi.

Before we get to the main definitions and constructions, we need some terminology.
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Notation 2.2. For each hyperplane Hi ∈ A, let αi := αHi
be a linear form with kerαi = Hi.

Then let ωi := ωHi
be the corresponding differential form 1

2πi
dαi

αi
. Notice that αi is only

unique up to a scalar multiple but ωi is unique. Define ωS := ωi1 · · ·ωip for any tuple
S = (Hi1 , . . . ,Hip). Let Ωp be the space of all differential p-forms on M , and Ω∗ :=

⊕
p≥0 Ωp

with the usual ring structure given by the exterior product of differential forms.

Remark 2.3. The forms 1
2πi

dαi

αi
represent generators in the de Rham cohomology of the

complement M . This will be the key to building a map R → H∗(M) later. These forms
should also look familiar. A generator ofH∗(C∗) is represented by 1

2πi
dz
z and the complement

of a single hyperplane is homotopy equivalent to C∗.

Definition 2.4. For a complex arrangementA, the Brieskorn Algebra ofA is the subalgebra
R generated by {1, ω0, . . . , ωn} ⊂ Ω∗.

As before, we need to make sure we have adequate maps R′ → R and R→ R′′.

Proposition 2.5. There is a natural inclusion R′ ↪→ R.

Proof. This follows from noting that the forms ω′i ∈ R′ and ωi ∈ R all can be viewed as
rational forms (as they have simple poles) on the complex vector space V , and thus R and
R′ can be viewed as subalgebras of rational forms on V .

The other required map R→ R′′ is slightly more complicated and requires some complex
analysis to define.

Lemma 2.6. There exists a linear map j : R → R′′ satisfying ωS 7→ ωλS if H0 ∈ S and
ωS 7→ 0 if H0 /∈ S.

Proof. Consider the map R → Ω∗(M ′′) given by taking wi to its Poincare Residue around
H0 (see [3], pg 171). Basically this means taking a form ωS and finding the quotient when
“dividing” by ω0. This map satisfies the requirements in the claim and hence define a map
to R′′.

Now we define the algebra homomorphism A→ R.

Notation 2.7. Let ai be the image of ei under the projection E → E/I = A.

Lemma 2.8. There exists an algebra homomorphism γ : A → R sending ai → ωi. As ωi
generate R, this map is surjective.

Proof. First define ν : E → R by ei 7→ ωi. This is a well defined algebra homomorphism as
differential forms satisfy the same relations as exterior products.

It remains to show ν(I) = 0. As an algebra homomorphism, it is sufficient to show that
if S is a standard circuit, then ν(∂eS) = 0.

Let S = (Hi1 , . . . ,Hip) be a standard circuit. Without loss of generality, we may assume
S = (H1, . . . ,Hp) in order to simplify notation. As the Hi are dependent, so are their
defining linear forms αi. That means there are scalars ci such that

∑
ciαi = 0. Since

circuits are minimally dependent, ci 6= 0 for each i. Without loss of generality, we may
assume ci = 1 as scaling the αi preserve their kernel.

Therefore we have
∑
αi = 0 ⇒

∑
dαi = 0. Notice that we can use this to get the

following formula for any fixed j with 1 ≤ j ≤ p − 1 (note all sums and products in the
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following are taken over i, ranging from i = 1, . . . , p, unless otherwise noted):

0 =
∑

dαi =
(∑

dαi

) ∏
i 6=j
i6=j+1

dαi

 = (−1)j−1
∏
i 6=j+1

dαi + (−1)j−1
∏
i6=j+1

dαi.

Note that both products are over i such that i 6= j + 1. This is because moving αj past
α1 · · ·αj−1 gives the same sign as moving αj+1 past α1 · · ·αj−1.

This implies ∏
i 6=j+1

dαi = −
∏
i 6=j

dαi.

Let µj = 1
αj

(−1)j−1
∏
i 6=j ωi. Using the formula above, we have(∏

αi

)
µj+1 = (−1)j

∏
i6=j+1

dαi = (−1)j−1
∏
i 6=j

dαi =
(∏

αi

)
µj .

This shows that all the µj are the same, that is, µj is independent of j. Let µ be this
common value.

Applying this to ν gives

ν(∂eS) =

p∑
j=1

(−1)j−1
∏
i 6=j

ωi =

p∑
j=1

αjµj =

p∑
j=1

αjµ =

 p∑
j=1

αj

µ.

But recall
∑p
j=1 αj = 0 by the dependency of S. Therefore ν is 0 on I and induces the

desired algebra homomorphism.

Theorem 2.9. There exists an exact sequence of the form 0→ R′ → R→ R′′ → 0.

Theorem 2.10. A is isomorphic to R as C-algebras.

We can prove Theorem 2.9 and Theorem 2.10 simutaneously by induction on n = |A|.

Proof. If |A| = 0, then A and R are both C.
Using the linear maps from Proposition 2.5 and Lemma 2.6, the algebra homomorphism

from Lemma 2.8 and the exact sequence for A from Theorem 1.33, we can build the following
commutative diagram.

0 A′ A A′′ 0

0 R′ R R′′ 0

γ′ γ γ′′

By induction, γ′, γ′′ are isomorphisms. From Proposition 2.5, the bottom row is exact on
the left. Exactness on the right, i.e. the map R → R′′ is surjective, follows from the
commutativity of the right square.

From the definition of the horizontal maps, the composition R′ → R → R′′ is 0. Using
the fact that γ is onto, a diagram chase shows ker(R → R′′) ⊂ im(R′ → R). Therefore the
bottom row is exact. Now the five lemma implies γ is an isomorphism.
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3 Cohomology

The goal of this section is to prove that the de Rham cohomology of M is isomorphic to R
under the obvious map ωi 7→ [ωi]. The proof will rest on an exact sequence of the form

0→ Hp(M ′)→ Hp(M)→ Hp−1(M ′′)→ 0.

First note that by definition of the restriction A′′ it follows that M ′′ = M ′ ∩ H0 and
M = M ′ \M ′′.

Now consider the pair (M ′,M) and the corresponding long exact sequence in cohomology

· · · → Hq(M ′)→ Hq(M)→ Hq+1(M ′,M)→ Hq+1(M ′)→ · · · .

Our goal will be to replace H∗(M ′,M) with H∗(M ′′) using excision and a special case of
the Thom isomorphism. The Thom isomorphism will be the cause of the drop in dimension
seen above.

Notation 3.1. For a manifold X and submanifold Y ⊆ X, let νY⊆X be the normal bundle
of Y in X and Tot νY⊆X the total space of νY⊆X . Identify Y with the zero section of νY⊆X .
Let TX denote the tangent bundle to X and identify X with the zero section. Then by
definition νY⊆X = TX|Y /TY , where TX|Y = ι∗(TX) and ι : Y ↪→ X is the inclusion.

Lemma 3.2. The normal bundle νM ′′⊆M ′ is trivial with fiber C.

Proof. A general theorem says if a submanifold Y ⊆ X is closed and a subset U ⊆ X is
open, then νY ∩U⊆U = νY⊆X|Y∩U . The intuition behind the theorem is that intersecting with
open sets does not change local behavior. For our situation, take X = V , an l-dimensional
C vectorspace, Y = H0 ⊆ V , and U = M ′. Since M ′′ = M ′ ∩ H0, this theorem says
νM ′′⊆M ′ = νH0⊆V |M ′′ . But H0 is a (l − 1)-dimensional subspace of V , so it has a trivial
normal bundle with 1-dimensional fiber C.

Lemma 3.3. There is a canonical isomorphism α : H∗(M ′,M ′′)→ H∗(M ′′×C,M ′′×C∗).

Proof. There is a general theorem that for a manifold X with a closed (in the topological
sense, not necessarily compact) submanifold Y there is a canonical isomorphism H∗(X,X \
Y ) ∼= H∗(Tot(νY⊆X),Tot(νY⊆X)\Y ). The proof involves tubular neighbhorhoods, excision,
and the intuition that Y in X looks like Y in νY⊆X .

For our case, take X = M ′ and Y = M ′′. Using Lemma 3.2, we have νM ′′⊆M ′ \M ′ ∼=
M ′′ × C∗ since the left side is just the trivial bundle without the zero section. Then with
the fact that M = M ′ \M ′′, the general theorem says

α : H∗(M ′,M)→ H∗(M ′′ × C,M ′′ × C∗).

Since (M ′′×C,M ′′×C∗) is a fiber bundle pair with fiber (C,C∗) the Thom isomorphism
τ in this context (see [1], pg 441) is an isomorphism

τ : Hp(M ′′ × C,M ′′ × C∗)→ Hp−2(M ′′).

Together these give an isomorphism τα : H∗(M ′,M) → H∗−2(M ′′). So substituting
this into the long exact sequence for the pair given above and we have

· · · → Hp(M ′)→ Hp(M)→ Hp−1(M ′′)→ Hp+1(M ′)→ · · · .
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Taking out one small section of this sequence and adding zeros on the sides we get the
following complex (with exactness to be shown later):

0→ Hp(M ′)
ι∗→ Hp(M)

j∗→ Hp−1(M ′′)→ 0.

Here ι∗ is induced from the inclusion M ⊂ M ′ and j∗ = ταδ, δ : Hp(M) → Hp−1(M ′,M)
is the boundary map given in the long exact sequence, and τ, α are as above.

Remark 3.4. As this sequence was pulled out of the long exact sequence, we have for free
that it is exact in the center.

Now that we have the maps for our sequence, the next step is to build the connecting
map R → H∗(M). For this we will look at the grading of R given by the usual grading of
differential forms.

Notation 3.5. The grading of R is notated by R =
⊕

p≥0Rp where Rp = Ωp ∩R.

Lemma 3.6. There is a well defined graded algebra homomorphism ψ : R→ H∗(M) sending
ωS 7→ [ωS ].

Proof. We know there is a well defined natural graded algebra homomorphism Ω∗(M) →
H∗(M) given by sending a differential form to its cohomology class, ω 7→ [ω]. The desired
map is the restriction of this map to R.

Lemma 3.7. The maps ι∗ and j∗ make the diagram

R′p Rp R′′p−1

Hp(M ′) Hp(M) Hp−1(M ′′)

ψ′ ψ ψ′′

ι∗ j∗

commute. The top horizontal maps are the ones defined in the previous section.

Proof. As ι is induced from the inclusion R′ ↪→ R (the same as the map induced from
M ⊂M ′), it satisfies ι([ωS ]) = [ωS ], where the left is viewed in H∗(M ′) and the right is in
H∗M . This implies ι commutes with ψ.

By construction, j∗ = ταδ. It is not hard to see that ταδ has to commute with ψ. For
example, consider a form [ωS ] ∈ H∗(M). Sending through δ takes this form relative to
the compliment of H0. Then τα excise out H0, similar to how the residue map R → R′′

removed ωH0
. Thus ταδ([ωS ]) = [ωλS ] meaning the right square commutes. A detailed and

comprehensive proof can be found in [5], [6].

We now can state the main theorem. The proof will be the exact analogue of Theorem 2.9
and Theorem 2.10.

Theorem 3.8. There is an exact sequence 0→ Hp(M ′)→ Hp(M)→ Hp−1(M ′′)→ 0 for
every p.

Theorem 3.9. ψ : R→ H∗(M) is an isomorphism of graded C-algebras.



Travis Scholl 13

Proof. We prove both theorems simultaneously by induction on |A|. If |A| = 0 it is true
since both algebras are just copies of C and ψ is an isomorphism.

From Lemma 3.7 the diagram

0 R′p Rp R′′p−1 0

0 Hp(M ′) Hp(M) Hp−1(M ′′) 0

ψ′ ψ ψ′′

ι∗ j∗

is commutative for every p.
From the construction of the horizontal maps in Theorem 2.9, it is clear that they respect

the grading. Therefore the top sequence is exact.
Because the bottom row came from the long exact sequence, it is exact in the middle.

Commutativity of the right square implies j∗ is surjective for every p. In the long exact
sequence the bottom row came from, the map after j∗ must be 0 as j∗ is surjective. Which
means ι∗ (the next map) is injective for every p. Therefore the bottom row is exact.

By induction, ψ′, ψ′′ are isomorphisms. Therefore the five lemma implies ψ is an iso-
morphism.

4 Conclusion

Combining Theorem 2.10 with Theorem 3.9 shows A ∼= R ∼= H∗(M). This is important for
a number of reasons.

For one, it shows an explicit relationship between the topology (cohomology ring) and
the combinatorics (circuits) of an arrangement A. Further relationships between topological
and combinatorial aspects of arrangements is an active area of research.

Another reason this result is important is that it shows the Brieskorn algebra R of an
arrangement is “formal,” i.e. it is quasi-isomorphic to its cohomology, H∗(M).

References

[1] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[2] Jurgen Herzog and Takayuki Hibi. Monomial Ideals. Springer, 2011.

[3] Boris A. Khesin and Robert Wendt. The Geometry of Infinite-dimensional Groups.
Springer, 2009.

[4] Peter Orlik and Louis Solomon. Combinatorics and topology of complements of hyper-
planes. Inventiones Mathematicae, 56:167–189, 1980.

[5] Peter Orlik and Hiroaki Terao. Arrangements of Hyperplanes. Springer, 1992.

[6] Sergey Yuzvinsky. Orlik-solomon algebras in algebra and topology. Russian Mathemat-
ical Surveys, 56(2):293–364, 2001.


	Introduction
	Orlik-Solomon Algebra
	Brieskorn Algebra
	Cohomology
	Conclusion

