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1 Moduli Problems

A moduli problem is basically a way to parametrize a family of geometric objects to study some
properties. We will be interested in moduli spaces which we will use for the parametrization.

Example 1.1. Consider the set of lines through the origin in R2. Each is of the form ax` by “ 0
for some a, b P R. Moreover, two lines agree if and only if their coefficients are a multiple of each
other. This means there is a bijection between lines through the origin in R2 and P1pRq.

Moreover, this is a nice parameterization because lines through the origin in Q2 are parametrized
by P1pQq which can be thought of as the rational points on P1pRq. So there is a natural map from
lines in Q2 to lines in R2 which corresponds with the map P1pQq Ñ P1pRq.

Preview of whats to come: imagine a functor from Fields to Set by taking a field k to all lines
through the origin in A2

k. What we said above is similar to saying this functor is represented by
P1
k.

2 Elliptic Curves as Lattices

This section can be summarized by the following.

Theorem 2.1. There is an equivalence of categories between compact Riemann surfaces, function
fields, and irreducible algebraic curves.

Proof. For compact Riemann surfaces to function fields see [GGD12, Chapter 1 Section 3 Propo-
sition 1.95]. The hardest part is showing there exist non-constant meromorphic functions on a
arbitrary compact Riemann surface. For function fields and algebraic curves see [Har77, Chapter
1 Section 6 Corollary 6.12]

Note 2.2. Here an algebraic curve is a nonsingular projective variety of dimension 1 over C with
dominant morphisms. Basically we need to remove trivial maps in each category.

We will specialize to subcategories of complex tori and elliptic curves.

2.1 Objects

Recall the identification of complex elliptic curves E{C with complex tori C{Λ for a lattice Λ Ď C.
For example see [Mil06, Chapter III Section 3] or [DS07, Chapter 1 Section 4].

The main points are summarized here.

‚ Given a lattice (free Z-submodule of rank 2) Λ Ď C, the field of meromorphic functions on C{Λ
is Cp℘, ℘1q where ℘ is the Weierstrass ℘-function for Λ given by z ÞÑ

ř

λPLzt0u

´

1
pz´λq2

´ 1
λ2

¯

` 1
z2

.
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‚ The Wierstrass ℘-function satisfies
ˆ

1

2
℘1Λ

˙2

“ ℘3 ` a℘` b

where a “ ´15
ř

λPLzt0u
1
λ4

and b “ ´35
ř

λPLzt0u
1
λ6

.

‚ The cubic equation y2 “ x3 ` ax ` b (with a,b as above) is non-singular and thus defines a
complex elliptic curve EΛ.

‚ There is a map ϕ : C{Λ Ñ EΛ given by z ` Λ ÞÑ
`

℘pzq, 1
2℘
1pzq

˘

. This is an isomorphism as
compact Riemann surfaces, nonsingular projective curves (note they have the same function
fields), and also as algebraic groups. The last one can be shown by writing out ℘pz1 ` z2q as a
rational function in ℘, ℘1 applied to z1, z2, then show z1 ` z2 ` z3 P Λ ñ ϕpz1q, ϕpz2q, ϕpz3q are
colinear.

This shows every lattice corresponds to a complex elliptic curve. One can show this process is
surjective [see just about any reference, including [DS07]], i.e. every elliptic curve corresponds to
an elliptic curve given by some (non-unique!) lattice.

2.2 Morphisms

First we need to know what the morphisms of Tori look like.

Theorem 2.3. Suppose ϕ : C{Λ Ñ C{Λ1 is a meromorphic function sending 0 ÞÑ 0. Then ϕ is
induced by the map z ÞÑ mz for some m P C such that mΛ Ď Λ1. In particular, such a map is an
isomorphism if and only if mΛ “ Λ1.

Proof. (See [DS07, Chapter 1 Section 3] or Ralph’s notes)
Consider the following diagram.

C C

C{Λ C{Λ1

ψ

π π1

ϕ

The map ψ comes from lifting the map ϕ ˝ π which is possible as C is the universal covering space
of C{Λ1. We can choose ψ such that ψp0q “ 0 by the hypothesis on ϕ. Now ψ is a priori continuous,
but we can show it is analytic by noting that π, π1 are locally conformal.

Fix some λ P Λ and consider the map fpzq “ ψpz` λq ´ψpzq. Clearly this is an entire analytic
function on C and moreover

pπ1 ˝ fqpzq “ π1 ˝ ψpz ` λq ´ π1 ˝ ψpzq

“ ϕ ˝ πpz ` λq ´ ϕ ˝ πpzq

“ 0

Hence Im f Ď Λ1. Since this is a discrete set f is constant and therefore

f 1pzq “ 0 ñ ψ1pz ` λq “ ψ1pzq.

In particular this shows ψ1 is Λ-periodic hence bounded. But ψ1 is an entire analytic function,
so by Louivilles Theorem ψ1 “ m for some m P C. Because we constructed ψ so that 0 ÞÑ 0, so
ψpzq “ mz.

From the commutativity of the diagram we have ψpΛq “ mΛ Ď Λ1.

2



Note 2.4. Dropping the requirement on 0 will mean analytic maps are of the form mz ` b. These
are homotheties. What this means though, is that any map of Tori which fixes 0 is automatically
a group homomorphism. This carries over to Elliptic curves as well!

In summary we now have a concrete space of elliptic curves to work with.

Theorem 2.5. Let L be the space of lattices. Then the map Λ ÞÑ C{Λ induces a bijection L{C˚ Ñ
tC{Λu{ « where « is complex isomorphism of Tori.

Because of our equivalence of categories this means

Theorem 2.6. C{Λ1 – C{Λ2 if and only if EΛ1 – EΛ2. Moreover, all the relevant structure (e.g.
group structure) is preserved as well.

3 Preliminaries

There is a left action of SL2pZq on the upper half plane H given by
ˆ

a b
c d

˙

¨ τ “
aτ ` b

cτ ` d
.

Define
Γp1q :“ SL2pZq

Γ0pNq :“

"ˆ

a b
c d

˙

P SL2pZq | c ” 0 mod N

*

.

Γ1pNq :“

"ˆ

a b
c d

˙

P SL2pZq | c ” 0 mod N, a ” d ” 1 mod N

*

.

we will see exactly why we these restrictions are exactly what we need.
Now define quotients Y p1q, Y0pNq, Y1pNq as Γp1qzH,Γ0pNqzH,Γ1pNqzH. Since the action is

nice (besides a few odd points), these are complex manifolds. However, they are not compact.
Define Xp1q, X0pNq, X1pNq in the same way using the extended upper half plane H˚ “ HYQY

t8u instead of H. These spaces are compact, and usually referred to as the compactifications of the
Y spaces. The equivalence classes of QYt8u are called cusps. It is not hard to show the X spaces
have finitely many cusps. It will follow from a few facts such as the natural map X0pNq Ñ Xp1q,
Xp1q has one cusp, and rSL2pZq : Γ0pNqs is finite.

Note 3.1. Some people study much more general spaces by using more general subgroups Γ Ď
SL2pZq.

Note 3.2. Points in H˚ with non-trivial isotropy subgroup are called elliptic points. It turns out
elliptic points always have finite cyclic isotropy subgroups. Note i, ρ “ e2πi{3 are the only elliptic
points in Y1p1q. In general, there is only a finite number of elliptic points and they are only possibly
in the preimage of i, ρ under X Ñ X0p1q for any of the X spaces.

One can show all the X spaces are compact Riemann surfaces. The charts are obvious except
for at cusps and elliptic points, here you use various power maps. Also the topology is similar to
the standard ones except at cusps. A base is given by the circles (Euclidean) tangent to R. This
is equivalent to taking the usual topology on H Y t8u and then applying SL2pZq to all the open
subsets to get open subsets of Q points.

It’s fun to draw pictures of the fundamental domain of these regions. For example the following
sage code produces the fundamental domains shown in Figure 1.
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X0_1 = FareySymbol(Gamma0 (1)). fundamental_domain(tesselation=None ,show_pairing=True)

X0_3 = FareySymbol(Gamma0 (3)). fundamental_domain(tesselation=None ,show_pairing=True)

X0_11 = FareySymbol(Gamma0 (11)). fundamental_domain(tesselation=None ,show_pairing=True)

X0_23 = FareySymbol(Gamma0 (23)). fundamental_domain(tesselation=None ,show_pairing=True)

4 Xp1q

Let Λ be a lattice and choose a basis xω1, ω2y. Up to scaling and obvious changes, we can normalize
the basis to xτ, 1y with τ “ ω1

ω2
P H. We denote Λτ as the lattice given by xτ, 1y. However, τ is not

unique (for example Λτ`1 “ Λτ would give the same lattice). It isn’t too hard to figure out exactly
how to fix the uniqueness.

Theorem 4.1. Λτ « Λτ 1 if and only if τ 1 “ γpτq for some γ P SL2pZq. In which case, pcτ`dqΛτ 1 “

Λτ .

Proof.

pðq: Note γ applied to the basis tτ, 1u gives taτ ` b, cτ ` du. Because γ P SL2pZq we have
xτ, 1y “ xaτ ` b, cτ ` dy. Note the ratio of the second basis is aτ`b

cτ`d “ γpτq “ τ 1. Hence

Λτ 1 “
@

τ 1, 1
D

« pcτ ` dq
@

τ 1, 1
D

“ xaτ ` b, cτ ` dy “ xτ, 1y “ Λτ .

pñq: If Λτ « Λτ 1 then we can find a number m such that mΛτ 1 “ Λτ . Then there is a change of
basis γ P SL2pZq taking xτ, 1y to xmτ 1,my (possibly normalizing so determinate is positive).
Taking the ratios of the basis gives γpτq “ τ 1.

This means we have a bijection between Y p1q and L{C˚. Combining this result with above, we
have the following.

Theorem 4.2. There is a bijection between points on Y p1q and isomorphism classes of elliptic
curves.

Corollary 4.3. There is a bijection between the non-cusps of Xp1q and isomorphism classes of
elliptic curves over C.

So Xp1q is a compact Riemann surface, and hence isomorphic to a projective curve over C.
Most of the points correspond to elliptic curves so it looks like a great candidate for a moduli
space. The next obvious question is what curve is Xp1q?

4.1 As a Curve

From the standard fundamental domain, seen in Figure 1a, it’s easy to see there are 3 distinct
vertices, 2 edges, and 1 face defining the surface Xp1q. In the picture in, keep in mind the segment
on the imaginary axis in and out of the circle are different. Hence it has genus 0 and therefore is
conformally equivalent to the Riemann sphere, or P1pCq.

Note 4.4. In general it is possible to compute the genus of X0pNq by studying the degree of the
obvious map X0pNq Ñ Xp1q. It turns out ramification can only happen at i, ρ, or 8 (i.e. elliptic
points and cusps). In [Mil06, Chapter 5 Section 2], Milne references explicit formulas.
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Figure 1: Fundamental Domains
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4.2 As a Field

Recall the j-invariant. It can be defined in several ways, but most importantly recall it is a
holomorphic function on the upper half plane with a simple pole at 8 (normalized to have residue
1) and is invariant under SL2pZq, i.e. it is a modular function. Hence j descends to a meromorphic
function Xp1q Ñ P1pCq. Because it has one simple pole, general theory of compact Riemann
surfaces shows it is conformal. In fact, because we know the automorphisms of P1pCq are linear
fractional transformations which are uniquely determined by three points, we have proved the
following statement.

Theorem 4.5. j is the unique isomorphism Xp1q Ñ P1pCq sending i ÞÑ 1728, ρ ÞÑ 0, and 8 ÞÑ 8.

Corollary 4.6. The field of meromorphic functions on Xp1q is Cpjq.

Proof. This follows from considering the associated map on function fields.

Note that this shows Xp1q can actually be defined over k for any subfield k Ď C, just as P1pCq
is the same as P1

kpCq where P1
k is the rational projective line. This follows from a base change from

k to C which corresponds to field composition Ckpjq “ Cpjq. So we define Xp1qk to be P1
k, i.e. the

unique curve with function field kpjq. Notice Xp1qkpCq « P1
kpCq “ P1pCq so this definition makes

sense.
The j-invariant can be defined completely algebraically based off the coefficients of the elliptic

curve. So it still makes sense as a function on elliptic curves over arbitrary fields (though we are
only looking at characteristic 0 right now). So for any such k we have a map

tE{ku{ « Ñ P1
k “ Xp1qk

It’s looking like we are about to parametrize elliptic curves, but don’t get your hopes up.

Fact 4.7. Xp1q is NOT a moduli space for isomorphism classes of rational elliptic curves, i.e. the
map above is not bijective (even excluding the cusps), it fails injectivity on non-algebraically closed
fields. In particular, the rational points on Xp1qQ do not correspond to isomorphism classes of
elliptic curves over Q.

Reason. We know the j-invariant works as a parametrization over any algebraically closed field
because E1 « E2 if and only if jpE1q “ jpE2q. However this does not hold if k is not algebraically
closed. It is possible for two curves defined over a field k to be isomorphic only over some extension
of k. But the curves will be isomorphic over a finite extension of k (of degree at most 2), see Ralph’s
notes or [Mil06, Remark II.2.2]. The most common example is a quadratic twist where we go from
y2 “ x3 ` ax` b and dy2 “ x3 ` ax` b.

So close. But what we have isn’t useless, we did learn about the j-line.

5 X0pNq

Next consider the set S0 of pairs pE,Cq where E is an elliptic curve over C together with a cyclic
subgroup of order N . We will call two such pairs isomorphic if there is an isomorphism of curves
which also identifies the corresponding torsion groups.

Theorem 5.1. X0pNq is a moduli space for S0, i.e. there is a bijection between points on Y0pNq
(the non-cusps of X0pNq) and elliptic curves with an associated cyclic subgroup C of order N .
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Proof. We will use lattices instead of curves. Let pC{Λ, Cq P S0. Note that C as a subgroup of
C{Λ can be viewed as a lattice, Λ1 Ě Λ. As groups, rΛ1 : Λs “ N . So by the structure theorem of
finitely generated groups, we can find a basis xω1, ω2y for Λ such that

@

ω1,
1
N ω2

D

is a basis for Λ1.
Then by dividing by ω2 (and possibly normalizing sign), we have shown pC{Λ, Cq «

`

C{Λτ , 1
NΛ

˘

for some τ P H.
This gives us a map S0 Ñ Y0pNq sending

`

Λτ ,
@

1
N

D˘

ÞÑ τ . It remains to show it’s a well defined
bijection. Specifically, we need to show if two such pairs are isomorphic if and only if there is some
element of Γ0pNq taking one to the other.

We know from Theorem 4.1 that C{Λτ « C{Λτ 1 if and only if τ 1 “ γpτq for some γ P SL2pZq.
But now we have extra torsion data, so we want to know which γ preserve this as well. Also from
Theorem 4.1, we know γ induces the isomorphism C{Λτ 1 Ñ C{Λτ given by z ÞÑ pcτ ` dqz. It
remains to check when this isomorphism respects the extra torsion data. This follows by

B

pcτ ` dq
1

N
Λτ 1

F

“

B

cτ ` d

N
Λτ

F

”

B

1

N
Λτ

F

mod Λτ ô N | c, i.e. γ P Γ0pNq.

5.1 As a rational curve.

As before, we will realize X0pNq as a rational curve by studying its function field. We still have the
j function as before. We also have the function jN pτq “ jpNτq. This is a meromorphic function
on X0pNq since

jN

ˆ

aτ ` b

cτ ` d

˙

“ jN

ˆ

N
aτ ` b

cτ ` d

˙

“ j

ˆ

N
aτ ` b

cτ ` d

˙

“ j

ˆ

apNτq `Nb
c
N pNτq ` d

˙

“ jpNτq “ jN pτq.

Note how we used the hypothesis that

ˆ

a b
c d

˙

P Γ0pNq and that j was SL2pZq invariant.

Theorem 5.2. j and jN generate the meromorphic functions on X0pNq, i.e. CpX0pNqq “ Cpj, jN q.
Moreover, the minimal polynomial of jN over Cpjq is has coefficents in Q.

Proof. (See [Mil06, Chapter 5 Section 2]). Sketch: Pick coset representatives γi for Γ0pNqzSL2pZq
so SL2pZq “

Ů

Γ0pNqγi. Note there are precisely m “ rSL2pZq : Γ0pNqs representatives. Hence
m “ degpX0pNq Ñ Xp1qq and therefore m “ rCpX0pNqq : CpXp1qqs “ rCpX0pNqq : Cpjqs. So it is
enough to find an element of degree m over Cpjq.

Then the minimal polynomial for jN over Cpjq is turns out to be

F pj, Y q “
ź

pY ´ jpNγiτqq

which has degree m.
Note that each term is not in Cpjq, but the symmetric polynomial made by the product is

actually invariant under SL2pZq, so it is infact a rational function in CpjqrY s (since CpXp1qq “
Cpjq). Because the product is holomorphic on H, the coefficients must lie in Crj, Y s.

One can show F pj, Y q P Qrj, Y s using the fact that j has a rational q-expansion, and hence a
relation between j and jN must lie over Q.
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Corollary 5.3. CpX0pNqq “ CQpj, jN q.

This allows us to define X0pNqQ as the Q curve corresponding to the function field Qpj, jN q.

Example 5.4. In the case of N “ 11 it is possible to explicitly describe X0p11qQ. The idea is to
write down two modular functions x, y for Γ0p11q with a single pole at i8 of order at most 2, 3
respectively. It follows from Riemann-Roch (see [Sil09, Chapter II Section 5 Corollary 5.5c]) that
lpDq “ degD ´ g ` 1 (with usual notation) so the space of functions with a pole of at most order
6 at i8 is exactly 6. But we have seven functions, 1, x, y, x2, xy, y2, x3. Hence we get a non-trivial
linear relation which when normalized is exactly a Weirstrass equation.

In [Wes12, Section 4], the author finds such functions x, y. The construction of x, y is compli-
cated so we’ll skip it. It uses a lot of complex analysis, theta functions, and modular forms. We
end up with (after a lot of hard and clever work) is the equation

X0p11q : y2 ` y “ x3 ´ x2 ´ 10x´ 20

This gives us an explicit model over Q to work with.

5.2 Rational Points on X0pNq

Question 5.5. Is X0pNq a moduli space for elliptic curves over Q with Galois invariant subgroups
C of EpQq (meaning σpCq “ C for all σ P GalpQ{Qq) of order N?

First we need to know why did I write “Galois invariant” subgroups. This is because given
a Galois invariant subgroup C of a rational curve E, there exists a rational elliptic curve E1 and
isogeny E Ñ E1 with kernel C. Moreover, E1 is unique up to an isomorphism over Q. For a proof,
see [Sil09, Chaptr III Ex 3.13e]. The idea is to take all the field automorphisms given by translation
by elements of C and then take the corresponding fixed field. We denote E1 by E{C.

Now we have a natural map in one direction.

pE,Cq ÞÑ pjpEq, jpE{Cqq (1)

Where the right hand side is a point on the curve CN given by the equation Qrx, ys{F px, yq
where F is the same function as in the proof of Theorem 5.2. To show this map makes sense we
have to check the following.

Proposition 5.6. jpE{Cq “ jN pEq

Proof. If pE,Cq is represented by
`

C{Λτ ,
@

1
N

D˘

then E{C corresponds to the lattice spanned by
tτ, 1

N u which we can scale to get the lattice spanned by ΛNτ “ tNτ,
1
N u. Hence E{C – C{ΛNτ so

jpE{Cq “ jpNτq “ jN pEq.

Remark 5.7. While CN gives us an equation for X0pNq (hence a model for X0pNqQ), in practice
it is difficult to compute explicitly.

Example 5.8. Let E be the curve y2 “ x3 ´ x which has j-invariant 1728. Let P be the point
px, yq “ p´1, 0q of order 2. Then with sage we can compute the isogenous curve given by E{ xP y.

E1 = EllipticCurve ([0,0,0,-1,0])

phi = EllipticCurveIsogeny(E1,E1.torsion_points (2)[0])

E2 = phi.codomain (); E2

E2.j_invariant ()
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Elliptic Curve defined by y^2 = x^3 - 11*x + 14 over Rational Field

287496

To see this is indeed the right map, we can enter

phi.kernel_polynomial ()

phi.degree ()

x + 1

2

In general, the map in Equation 1 is not surjective as we will see later due to Mazur’s Theorem.

Example 5.9. Recall the equation for X0p11q is y2 ` y “ x3 ´ x2 ´ 10x ´ 20. In sage we can
compute

E = EllipticCurve ([0,-1,1,-10,-20]); E

Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

E.rank()

0

E.torsion_order ()

5

Thus X0p11q has 5 rational points. One can show as an exercise that rSL2pZq : Γ0ppqs “ p` 1.
This means the degree of the map X0p11q Ñ Xp1q is 12 and hence there are 12 cusps counting
multiplicity. In fact it turns out there is only 2 actual cusp points. These do not correspond to
elliptic curves because remember the map in Equation 1 lands in Y0pNq. We can not say what
exactly the other 3 points mean, so for now they just mean we need a better space.

The following theorem shows how close X0pNq is to a fine moduli space.

Theorem 5.10. The map in Equation 1 is functorial in k and always surjective onto Y0pNqk for
any field k of characteristic 0. When k is algebraically closed it is a bijection.

Proof. See [Mil06, Chapter V Theorem 2.7].

6 X1pNq

Next consider the set S1 of pairs pE,P q where E is an elliptic curve over C and P is a point of
order N .

Theorem 6.1. X1 is a moduli space for S1, i.e. there is a bijection between points on Y1pNq and
elliptic curves with associated point P of order N .

Proof. This should follow similarly to Theorem 4.1 and Theorem 5.1.
The first step is to show any pair pC{Λ, wq is isomorphic to a pair

`

C{Λτ , 1
N

˘

for some τ .

From the proof of Theorem 5.1 we know such a pair is isomorphic to
`

C{Λτ , cτ`dN

˘

for some τ and
c, d P Z.

Now by hypothesis the point cτ`d
N must have order exactly N . Another way to say this is pc, dq

has order N in Z{NZˆZ{NZ where c is the reduction of c modulo N . This means gcdpc, dq “ 1 so
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we can find a, b P Z such that ad´bc ” 1 mod N , i.e. the matrix γ “

ˆ

a b
c d

˙

PM2pZq descends to

SL2pZ{NZq. Modifying the matrix modulo N (i.e. adding multiples of N to the entries) preserves
the point cτ`d

N so we may choose γ P SL2pZq. This is because the map SL2pZq Ñ SL2pZ{NZq is
surjective. Define τ 1 “ γpτq and notice the isomorphism C{Λτ 1 Ñ C{Λτ is given by multiplication
by cτ ` d and hence takes the point 1

N to cτ`d
N .

The next step is to show

ˆ

C{Λτ ,
1

N

˙

«

ˆ

C{Λτ 1 ,
1

N

˙

ô τ 1 “ γpτq for some γ P Γ1.

pðq: We know there is an isomorphism Λτ 1 Ñ Λτ given by multiplication by cτ ` d. Note by
definition of Γ1 we have

1

N
ÞÑ pcτ ` dq

1

N
”

1

N
mod Λτ

because c ” 0 mod N and d ” 1 mod N .

pñq: We can apply the same reasoning as in Theorem 4.1 to find some γ P SL2pZq which must induce
the isomorphism

`

C{Λτ 1 , 1
N

˘

Ñ
`

C{Λτ , 1
N

˘

. By hypothesis we have then that pcτ ` dq 1
N ”

1
N

mod Λτ . This implies c ” 0 mod N and d ” 1 mod N which is enough as the condition on
a is forced by looking at the determinate formula modulo N .

6.1 As a Rational Curve

Arguments a little more complicated but similar to those in we used for X0pNq show that X1pNq
is again a rational curve. There is still a natural map S1 Ñ Y1pNq over Q.

6.2 X1p11q

Fact 6.2. X1p11qQ is a fine moduli space (after accounting for cusps as usual) for rational elliptic
curves with a given point of order 11.

The proof is difficult but the main reason why X1p11q works and X0p11q did not is because of
something someone might call “rigidity”. Two rational elliptic curves with given Galois invariant
subgroups of order N can be isomorphic over Q but not over Q as we saw above. This is because
of the variety of isomorphisms, which can be viewed as “twists” of points on X0p11q.

It turns out that X1pNq is more rigid. Between any two pairs pE,P q and pE1, P 1q there is at
most one isomorphism E Ñ E1 sending P to P 1. Assuming this fact, note that given such an
isomorphism ϕ : E Ñ E1 we can choose any σ P GalpQ{Qq and look at ϕσ : Eσ Ñ pE1qσ, meaning
apply σ to all the coefficients. Because E,E1, P, P 1 are all rational they stay the same and hence
by rigidity ϕσ “ ϕ and hence ϕ is defined over Q.

This doesn’t prove it is a fine moduli space, but it does show that the big obstruction for X0p11q
and Xp1q doesn’t exist for X1.

6.2.1 Points

First with some combinatorial algebra, one can show X1p11qQ has 5 cusps. It is not hard to show
X1p11q has 10 cusps, but then it turns out they are not all “rational”. So there are only 5 cusps
on X1p11qQ. These are points on X1p11q which do not correspond to rational curves in S1{Q.
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We (or somebody very comfortable with modular forms and theta functions) can again somehow
calculate a model for X1p11q as we did for X0p11q. It turns out to be

X1p11q : y2 ` y “ x3 ´ x2

Now we can plug this into sage and note

E = EllipticCurve ([0,-1,1,0,0]); E

Elliptic Curve defined by y^2 + y = x^3 - x^2 over Rational Field

E.rank()

0

E.torsion_order ()

5

Thus we have just shown that no rational elliptic curves have a point of order 11. What is even
more remarkable, is that Mazur showed X1pNq fails to have rational points for almost all N . This
gave the following theorem.

Theorem 6.3 (Mazur’s Torsion Theorem (1977)). Let E be an elliptic curve over Q. Then the
torsion subgroup of EpQq if one of the following 15 groups:

p1´ 11q: Z{NZ for N “ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12.

p12´ 15q: Z{2Zˆ Z{NZ for N “ 1, 2, 3, 4.
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