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Abstract

Notes on Néron models to supplement [Mil08], [BLR12], and [Sil94].

1 Motivation

Néron models are important1. We will use them to answer the following questions.

Question 1. What can you say about n torsion between two isogenous abelian varieties?

Question 2. What is a reduction?

2 Models

We start by defining models. For this we need Dedekind schemes.

Definition 2.1. A Dedekind scheme S is a noetherian, normal scheme of dimension 0 (this makes
Dedekind schemes closed under localization) or 1.

Definition 2.2. Let S be a Dedekind scheme with function field K (if S is not connected we take
K “

À

OS,ν , which is finite by the noetherian hypothesis, where the sum is over all the generic
points ν of the irreducible components of S). Let XK be a K-scheme. An S-model for XK is any
S-scheme Y such that YK – XK .

Exercise 2.3. Show XK is an S-model for itself.

We note that there may be many choices for an S-model.

Example 2.4. Let Y be any S-model for XK . Then removing or blowing up any point of Y not in
the generic fiber over S is again an S-model for XK .

Example 2.5 (Chasing Denominators). Let R be a valuation ring with fraction field K and suppose
we have a finite type projective or affine K-scheme XK . The method of chasing denominators
(see [BLR12, Ch. 1.1]) gives us a way of constructing an R-scheme X such that the generic fiber of
X gives us back XK . Concretely, this means scaling all the defining equations appropriately so they
are defined over R.

The point of Néron models is to give a canonical choice of a “nice” model with many important
properties. For example, if we start with a group variety we would like the model to have a
compatible group structure.

1Néron Models are used for many things. See http://www.mathematik.uni-mainz.de/Members/peykar/

outline-neron.
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3 Incompatible Properties

3.1 Smooth and Proper

It is hard for a model to be both proper and smooth. The intuition is that proper means “large
enough” to not be missing any points but smooth means “small enough” to avoid any singularities.

Example 3.1 (See [Sil94, Ex. IV.2.6.3]). Let X be a closed subscheme of P2
Q cut out by the equation

y2 “ x3 ` 2x2 ` 6

Note X is a smooth (via the Jacobi criterion) projective (as a closed subscheme of P2
Q hence also

proper) curve over Q.
The same equation gives us a model over Z. This model is proper because it is a closed subscheme

of P2
Z, but not smooth because it has singular fibers at 2, 3, and 97 (using the Jacobian criterion

and the discriminant of Weierstrass equations). In fact the fibers over 3 and 97 aren’t even reduced.
However it’s not all bad because X is still regular.

For example the fiber X2 over the point p2q is the cuspidal cubic y2 “ x3 over F2 which has a
singularity at x “ y “ 0. Choosing an appropiate affine neighborhood in P2

Z, this point corresponds
to the ideal p2, x, yq in Qrx, ys{y2 “ x3 ` 2x2 ` 6. As X is 2 dimensional and this is a closed point
and the maximal ideal must be generated by at least two elements (since the tangent space is at
least 2 dimensional). But we don’t need 2 as a generator because after localizing we have

2 “ 3´1py2 ´ x3 ´ 2x2q.

Hence 2 is contained in the ideal generated by px, yq so X is regular at this point. In the fiber 2 “ 0
but x and y stay independent so the dimension stays two, which makes it non-regular.

Example 3.2. Note that there were only finitely many singularities (non-regular points) in the
bad fibers in the previous example. Let X0 be X without these points. Then X0 is a smooth model
for XK but is no longer proper over Z.

Indeed, if X0 Ñ Z was proper then because X Ñ Z is separated, the cancellation theorem would
imply X0 Ñ X was proper. But this is an open immersion and proper morphisms are closed. Since
X is connected this contradicts X0 ‰ X.

3.2 Point Extension and Group Structure

Let R be a valuation ring and K its field of fractions. Suppose XK is an projective variety over
K. We can use the method of chasing denominators to write down an R-model X using the same
defining equations.

Note that every K point over XK can be thought of a tuple of coordinates in projective K space.
By scaling we may assume each coordinate lies in R. Hence it is an R-point on X. This basically
shows canonical map XpRq Ñ XKpKq is surjective. Note this is very similar to the valuative
criterion for properness (see [Har77, Thm. II.4.7]). In fact a direct consequence of the valuative
criterion is that XpRq Ñ XKpKq is injective if X is separated over R (but R will be projective
which implies proper and hence separated).

Suppose AK is an abelian variety over K. The group structure on AK is given by a multiplication
morphism AK ˆK AK Ñ AK and an inversion morphism AK Ñ AK . Bharath showed us abelian
varities are projective, so we can clear denominators to construct an R-model A for AK . Here we
will assume R is some DVR with fraction field K.
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The morphisms defining the group structure on AK induce a rational maps on A. However these
do not in general extend to a regular maps so A may not have a compatible group structure.

If we localize A to the open A0 where these maps are defined, then we do get an induced group
structure on A0 (this is something to show with diagrams). However, we then lose the extension
property because the map ApRq Ñ AKpKq will fail to be surjective. This is similar to the previous
section where we saw localizing the model loses properness.

4 Definitions

Definition 4.1 (See [BLR12, Def. 1.1.1]). Let X be a scheme over a Dedekind scheme S. Then
X satisfies the extension property for étale points at a closed point s P S if for each étale local
OS,s´algebra R1 with field of fractions K 1, the canonical map

XpR1q Ñ XKpK
1q

is surjective.

The following lemma shows this is a special case of the valuative criterion with the main difference
is Definition 4.1 only requires étale extensions over OS,s instead of all valuation rings.

Lemma 4.2. A noetherian étale local extension of a DVR is again a DVR.

Proof. Let R be a DVR and R1 be a local étale R-algebra. Recall an étale map of local rings is (by
definition) flat and unramified.

Since R1 is flat over R which is a PID, it follows R1 is torsion free. Therefore RÑ R1 is injective.
Moreover, the image of a non-zero element of R is a non-zero divisor of R1.

Let t be a uniformizer of R. Because t is not a zero divisor in R1 we have tnR1 Ľ tn`1R1 for any
n ě 1. This shows R1 is not artinian so dimR1 ě 1.

Unramified means that the image of the maximal ideal mR generates the maximal ideal mR1 , i.e.
mR1 “ tR1. It follows mR1{m2

R1 is generated by t so dimR1 ď 1. Together with the previous bound
this shows dimR1 “ 1 and moreover R1 is regular. Recall the (very non-trivial) fact that regular
local rings are UFDs and therefore normal. Hence R1 is a DVR.

You could probably also do this without using such heavy machinery.

Corollary 4.3. Suppose X is separated over S and let R1 be a local étale R-algebra. Then there is
a natural injection

XpR1q Ñ XKpK
1q.

Proof. This follows from the valuative criterion for separatedness since R1 is a DVR.

Definition 4.4 (See [BLR12, Def. 1.2.1]). Let XK be a smooth separated K-scheme of finite type
and S a Dedekind scheme with function field K.

A Néron model of XK over S is an S-model X which is smooth, separated, finite type, and has
the following universal property.
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For any smooth S-scheme Y and K-morphism YK Ñ XK there exists a unique S-morphism
Y Ñ X extending YK Ñ XK . In terms of a diagram this looks like

XK X

YK Y

K S
smooth

D!

Note that this definition is equivalent to defining the Néron model as the scheme which represents
the functor on smooth S-schemes given by Y {S ÞÑ HomKpYK , XKq, (see [Mil08, Rem. 17.2]).

5 Properties

In this section we will assume a Néron model X exists.

Proposition 5.1. Néron models are unique up to a unique isomorphism.

Proof. This follows in the usual way from the universal property.

Proposition 5.2. Néron models are local in the base.
This means X is a Néron model of XK if and only if for any open T of S, XT is a Néron model

for XK over T .

Proof. Notice smoothness, finite type, and separated are all local in the base so we only need to
check the universal property. This follows from drawing enough diagrams. The only subtle direction
is going backwards. To define the map Y Ñ X as in the definition, we define maps locally on open
subsets YT Ñ XT by hypothesis. Their uniqueness will guarantee gluing compatibility.

Remark 5.3 (Local to Global principle). If X is finite type, then instead of considering XT we can
consider X ˆS OS,s for only the closed points s P S. These are called the local Néron models. One
can show that if X is a Néron model then so are all of the X ˆS OS,s. Hence a global Néron model
implies the existence of all local models. The converse is not true in general.

Proposition 5.4. Néron models satisfy the extension property for étale points.

Proof. Let R1 be an étale extension of S and K 1 (we may assume R1 is integral). Then the claim
follows from applying the universal property to the maps R1{S and K 1{K.

Proposition 5.5. Néron models are stable under étale base change.
This means if S1 Ñ S is étale then X ˆS S

1 is a Néron model for XK ˆK K 1.

Proof. Note smoothness, separated, and finite type are all preserved under base change. So it
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remains to verify the universal property. To do this we draw the following diagram.

XK X

XK1 X 1

K S

K 1 S1

The property follows exactly as you would expect. The only subtlety is that in order to use the
universal property of X, we need that X 1 Ñ S1 Ñ S to be smooth. This is where we are using
S1 Ñ S is étale . Actually, requiring S1 Ñ S be smooth and S1 be a Dededkind scheme gives us
étale since étale is smooth of relative dimension 0.

Proposition 5.6. Néron models are compatible with group structure.
This means if XK is a group scheme and X is a Néron model, then the group structure on XK

extends uniquely to X.

Proof. This follows from the universal property of Néron models. For example, the inversion map is
defined as follows. Let ιK : XK Ñ XK and µK : XKˆXK Ñ XK be the inversion and multiplication
map for XK . Then applying the universal property there exists a unique morphisms ι, µ on X and
X ˆX respectively extending ιK , µK . One still has to check these satisfy the group axioms, but it’s
probably straight forward.

6 A Non-Example

Let S “ Zp2q and X “ P1
S . Then K “ Q and XK “ P1

K . It is clear that X is an S-model for XK

and moreover, X is smooth, separated, finite type, and even satisfies the point extension property.
We want to show X is not a Néron model for XK .

Take Y “ X then there are automorphisms of YK Ñ XK which do not extend to automorphisms

Y Ñ X, for example

ˆ

2 0
0 1

˙

P PGL2Q. Hence X is not a Néron model.

7 An Example

Proposition 7.1. Let X be an abelian scheme (proper, smooth, group scheme with geometrically
connected fibers) over a Dedekind scheme S. Then X is a Néron model for XK .

Lemma 7.2 (See [Mil13, Prop. 2.12]). Suppose X,Y are noetherian and X Ñ Y is smooth and
finite type. If Y is regular/normal/reduced then so is X.

Proof. One definition of smooth is that it factors locally as X Ñ AnY Ñ Y where X Ñ AnY is étale .
Since all these properties are local, it is enough to check the claim on stalks.

(i) Assume f : X Ñ Y is étale . This is the case proved in [Mil13]. The ideas are as follows:

Reduced should follow from the square-zero lifting definition of formally étale .
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Regular should follow from the fact that étale morphisms preserve dimensions of stalks and
tangent spaces (see [LE06, 4.3.23]).

Normal follows from a nice description of étale ring extensions.

(ii) Assume f : X “ AnY Ñ Y . In this case everything follows from the fact that if A is
regular/normal/reduced then so is Arxs (see for example http://stacks.math.columbia.

edu/tag/030A).

Remark 7.3. From the proof above, specifically that S Ñ T étale with T reduced implies S is
reduced, one can show if S Ñ T étale then Sred Ñ T red is étale , see http://math.stackexchange.

com/questions/1077523/etale-morphism-and-reduced-schemes.

(Sketch of Proof Proposition 7.1). Let Y be any smooth S-scheme with a map YK Ñ XK . Note
this extends to a rational map f : Y 99K X defined on some open. Fix a closed point s P S and let
ζ be a generic point of the fiber Ys.

Using the fact that Y Ñ S is flat one can show OY,ζ “ 1. By the previous lemma, Y is normal
hence Oζ,Y is a DVR.

We may assume Y Ñ S is dominant otherwise the map is trivial as S (consider the topology on
S without its generic point). Let L be the function field of Y (note L “ FracpOY,ζq). Dominance
gives us a map specLÑ specK which induces a unique map specLÑ YK . Following by our map
YK Ñ XK Ñ X we have a commutative diagram

specL X

specOY,ζ S

Abelian schemes are proper by definition hence the dotted arrow is the unique lift.
Now a map from the stalk at a point extends to a rational map defined near the point. Hence

YK Ñ XK extends uniquely to a rational map around every codimension 1 point. So if U is the
maximal open where f is defined, then Y zU has codimension at least 2. Recall Manar proved earlier
a theorem about extending rational maps from a smooth variety to a group variety. It turns out
there is a similar extension theorem for this setting (smooth scheme into a group scheme over a
normal noetherian base, see [BLR12, Thm. 4.4/1]).

We can reverse the proof of Proposition 7.1 to actually get a criterion for being a Néron model
of the generic fiber.

Proposition 7.4. Let X be a smooth separated S-group scheme of finite type. Then X is a Néron
model of its generic fiber if and only if X satisfies the extension property for étale points.

Proof. See [BLR12, Crit. 1.2/9] for a sketch.

8 Existence

Theorem 8.1 (See [BLR12, Thm. 1.4/3]). Let S be a connected Dedekind scheme with function
field K and let AK be an abelian variety over K. Then the Néron model of AK exists.
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Not even a sketch. The proof of existence is broken up into two steps: first prove Néron models
exist locally (when S is a DVR) and then glue these together to build a global model. This is
described in [BLR12, Sec. 1.3,1.4]. It turns out the abelian variety structure of AK is needed to
glue together the local models.

A proof specific to elliptic curves can be found in [Sil94, Thm. IV.6.1]. This is more hands on,
so it shows one can in practice actually “write down” a Néron model.

Theorem 8.2 (See [Sil94, Thm. IV.5.3,IV.6.3]). Let K be a field and E{K an elliptic curve. Let ν
be a discrete valuation on K and R the corresponding DVR. Fix a minimal Weirstrass equation for
E. This means a Weirstrass equation which minimizes the valuation of the discriminant with the
condition that all the coefficients live in R.

Let W represent the closed subscheme of P2
R given by the same Weirstrass equation as E and

W0 the smooth locus of W{R. Then

(i) WK “W0
K “ E{K

(ii) WpRq –Ñ EpKq and if W is regular then W0pRq
–
ÑW0pKq

(iii) The group structure on E{K extends to a group structure on W0{R.

(iv) If E has good reduction (i.e. W0 “W) then W is a Néron model for E.

Proof.

(i) WK “ E because they have the same defining equation. Note every point in the generic fiber
of W is smooth as the fiber is an elliptic curve. Hence W0 contains the entire generic fiber of
W so W0

K “WK .

(ii) WpRq “ EpKq follows from the valuative criterion for properness because W is a closed
subscheme of P2

R so in particular it is proper. Now suppose W is regular. We will show
WpRq “W0pRq. We will do this by showing the image of any R-point in W lies in the smooth
locus. Fix an R-point f : specRÑW. By (a) the image of f in the generic fiber is smooth
so it’s enough to check the special fiber. Let t be a uniformizer of R and fix a closed point x
in Xk where k is the residue field R{ptq. To ease notation set A “ OX,x and m “ mx. Note
dimA “ 2.

The stalk at x in the fiber is A{tA. Since t P m (because RÑ A is a local ring homomorphism)
the dimension of the tangent space of the fiber is dimA{mm{tm

2. By hypothesis, A is regular
so dimA{mm{m

2 “ 2. Thus x is regular in the fiber if and only if t R m2. But R Ñ A Ñ R
is the identity and these are maps of local rings, so t P m2 would imply t P ptq2 which is a
contradiction.

(iii) This can be proven by writing down the formula for the group structure of E on different
affine components of W ˆW and W. Once the formula is written down, it’s not hard to see
where it is defined. For example if char k R t2, 3u, we can use a change of coordinates to put
the Weirstrass equation into the form y2 “ x3` ax` b. In the usual affine patch W 1 the group
law W 1 ˆW 1 ÑW Ď P2

R may look like (see [Sil09, III.2.3])

px1, y1q ˆ px2, y2q ÞÑ

„

px2 ´ x1q
`

py2 ´ y1q
2 ´ px2 ´ x1q

2px2 ` x1q
˘

,

py2 ´ y1q
3 ` px2 ´ x1q

2px1y1 ´ x2y2 ` 2x2y1 ´ 2x1y2q,

px2 ´ x1q
3


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This is well defined everywhere except possibly the diagonal. To deal with the diagonal you
can rewrite the group law using y2 “ x3 ` ax ` b. This works everywhere except for when
y1 ` y2 “ x21 ` x1x2 ` x

2
2 ` a “ 0. Continuing this pattern shows the map extends everywhere

except possibly the unique singular point on the special fiber. The inversion map follows
similar and the fact that they satisfy all the axioms follows from the fact that they define a
group law on the generic fiber.

(iv) This follows from Proposition 7.1.

Remark 8.3. There is another model often associated to Elliptic curves. This is the regular proper
minimal model, i.e. a model W which is a regular scheme, flat and proper over R, and given any
other such model W 1 such that W ÑW 1 is an isomorphism on the generic fiber, then W ÑW 1 is an
isomorphism over R. These models also exist and are unique (see [BLR12, Ch. 1.5]) for references.

Theorem 8.4 (See [Sil94, Thm. IV.6.1]). The smooth locus of a minimal proper regular model is a
Néron model.

9 Reductions

Néron models also tell us something about the reduction of a variety. In the case of elliptic curves,
Tate’s algorithm gives a process by which to deduce the special fiber of a minimal proper regular
model for E{K, see [Sil94, Table. IV.4.1, Pg. 365]. One important corollary to this classification is
the following.

Corollary 9.1 (See [Sil94, Cor. IV.9.2]). Let E{K be an elliptic curve and choose a minimal
Weierstrass equation. Set E0pKq to be all points of EpKq which reduce to a non-singular point.
Then EpKq{E0pKq is finite.

This is one of the main ingrediants in the Criterion of Néron -Ogg-Shafarevich. Assume the
residue field is perfect (for example think of the case K “ Qp and k “ Fp).

Theorem 9.2 (Criterion of Néron -Ogg-Shafarevich, see [Sil09, Thm. VII.7.1]). Let E{K be an
elliptic curve over a local field with non-archimedean valuation ν. Then TFAE

(a) E has good reduction at ν, i.e. the curve given by a minimal Weirstrass equation in the residue
field is non-singular and hence defines an elliptic curve.

(b) Erms is unramified at ν for infinitely many (all) m ě 1 prime to p “ char k.

(c) The Tate module T`pEq is unramified at ν for some (all) primes ` ‰ char k.

Proof. See proof of Theorem 10.3.

Remark 9.3. The “(all)” in the statements should be read as a separate statement with “all” replacing
the other quantifier. If ordered in the correct way, the only hard implications should be paq ñ pbq
(with all used) and pbq ñ paq (with infinitely many used). Recall T`pEq is unramified if and only if
Er`ns is unramified for all n ě 1.

To understand what the theorem is saying we need to define an unramified Galois module. We
will keep the same assumptions as above.
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Definition 9.4. Keeping the same notation as in Theorem 9.2, let G “ GalpKs{Kq where Ks is the
separable closure of K. Recall the definitions of the decomposition and inertia subgroups. First let
ω be an extension of ν to Ks (this is unique with our assumption K is local, however we could let K
be a global field and fix an extension ω and get the same thing). See [?, Ch. 2.9] and [ST68, Sec. 1].

The decomposition subgroup Dω is all σ P G such that ω ˝ σ “ ω. Equivalently, Dω are
the automorphisms of Ks which are continuous with respect to ω. There is an induced map
D Ñ Galpk{kq and the inertia subgroup is the kernel. A standard fact They form an exact sequence

1 Ñ Iω Ñ Dω Ñ Galpk{kq Ñ 1

Let X be a G-set. Then X is unramified with respect to ν if Iω acts trivially on it. Note this
makes sense because it is independent of ω. This is because any two extensions are conjugate, i.e. if
we had chosen ω1 then there exists σ P G with ω1 “ ω ˝ σ. It follows that Iω acts trivially on X if
and only if Iω1 does as well.

10 Extension to Abelian Varieties

The criterion in Theorem 9.2 can be extended to abelian varities as done in [ST68]. In this case
instead of using minimal regular proper models, we use Néron models.

Since we no longer have Weierstrass equations, we also have to define what “good reduction”
means. We keep the same conditions on K as in the previous section.

Definition 10.1. Let A be an abelian variety over K. We say A has good reduction at ν if there
exists an abelian scheme A over S “ specOK such that AK “ AˆS specK – AK . Here OK is the
valuation ring corresponding to ν.

Remark 10.2. Recall Proposition 7.1 implies that such an Aν is automatically a Néron model and
from Theorem 8.1 we know Néron models for abelian varieties exist. So an alternative definition for
“good reduction” could be “the Néron model is an abelian scheme”. Since Néron models are already
smooth and a group scheme, this is just requiring proper and connected fibers.

The generalization of Theorem 9.2 is exactly what you would expect.

Theorem 10.3 (See [ST68, Thm. 1]). Keeping the same assumptions/notation as above, TFAE

(a) A has good reduction at ν.

(b) Am “ HompZ{mZ, ApKsqq is unramified at ν for infinitely many (all) m primes to char k.

(c) T`pAq is unramified at ν for some (all) primes ` ‰ char k.

Sketch of Proof. For details, see [Sil09, Thm. VII.7.1] for the case of Elliptic curves and [ST68,
Thm. 1] for abelian varieties. The proofs in either case are similar except for the end.

Similar to Remark 9.3, the “(all)” parts should be read as separate statements. Let pb1q, pc1q
be the corresponding statements with “all” used. Also T`pAq is unramified if and only if A`n is
unramified for all n ě 1. This immediately gives

pb1q ñ pc1q ñ pcq ñ pbq.

This leaves two implications left. Let A{ specOK be the Néron model for A and let rA “ AˆS k be
the special fiber.
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Let L be the fixed field pKsqI . This is sometimes called the inertia subfield. It is also the
maximal unramified extension of K (see [?, Ch. 2.8,9] for more on this). This means it’s the smallest
subfield such that the residue field is ks, which is k in our case. Notice it is a union of étale extensions
and hence by the Néron mapping property

ApLq – ApOLq.

Recall the natural map
ApOLq Ñ rApkq.

Hensels’ Lemma (recall local fields are complete) gives surjectivity. Fixing m prime to char k and
counting shows they have the same size m-torsion (2 dimApLq “ 2 dim rApkq) so the reduction map
induces an isomorphism

ApOLqrms Ñ rApkqrms

which also commutes the action of the decomposition subgroup.

paq ñ pb1q : The definition of abelian scheme implies that rA is an abelian variety over k of the same
dimension as A.

Lucas showed us that for m coprime to the characteristic, the m torsion is a free Z{mZ module
of rank twice the dimension. Since dimA “ dim Ã, by above

rApkqrms – ApOLqrms – ApLqrms ãÑ Am

But rA and A have the same dimension so this must be an isomorphism of D-sets. Since I
acts trivially on the left by definition, it also acts trivially on Am.

pbq ñ paq : Let rA0 be the connected component of rA. It turns out that rA has a finite number c
of connected components. This is analogous to how EpKq{E0pKq was finite in the Elliptic
curve case. In the Elliptic curve case these groups came in an exact sequence. It turns
out rA0 is an extension of some abelian varities B and another group scheme U ˆ S where
U is a unitary group and S is a torus. We don’t need to know much about these except
dimU ˆ S “ dimU ` dimS and pU ˆ Sqm is a free Z{mZ-module of rank at most dimS.

So if m is coprime to char k we get an exact sequence

0 Ñ pU ˆ Sqm Ñ rA0
m Ñ Bm Ñ 0.

We also have an exact sequence from the inclusion of the identity component

0 Ñ rA0
m Ñ

rAm Ñ ˚ Ñ 0.

By hypothesis there are inifintely many m coprime to char k such that Am is unramified.
Choose one with m ą c. Note | ˚ | divides c but must be a multiple of m so ˚ “ 0. From the
second exact sequence we get

rank rA0
m “ rank rAm “ rankApLqrms “ 2 dimA

using the isomorphism in the previous direction. Then computing ranks of the first sequence
shows

dimS ` 2 dimB ě 2 dimA.
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But recall rA0 is an extension of B and U ˆ S and has the same dimension as A so

dimA “ dimB ` dimU ` dimS.

This shows S “ U “ 0 and hence rA0 – B which implies rA is an abelian variety. In particular,
we have shown rA is proper!

Finally a corollary to Zariski’s connectedness theorem shows A is proper. But a proper Néron
model is an abelian scheme by Remark 10.2.

11 Motivation Again

Here we list a few corollaries to the criterion of Theorem 10.3.

Corollary 11.1. If T`pAq is unramified for some `, then it is unramified at all ` ‰ char k.

Proof. This is the equivalence of pcq and pc1q from the proof of Theorem 10.3.

Corollary 11.2. Suppose AÑ A1 is a surjective homomorphism of abelian varieties over K. If A
has good reduction, then A1 does.

Proof. The induced map on Tate modules is also a surjection. So if I acts trivially on T`pAq it also
acts trivially on T`pA

1q.

Corollary 11.3. Suppose A and A1 are isogeneous. Then A has good reduction at ν if and only if
A1 does.

Proof. This follows from the previous corollary using the dual isogeny.

Corollary 11.4. Let 0 Ñ AÑ B Ñ C Ñ 0 be an exact sequence of abelian varieties. Then B has
good reduction at ν if and only if A and C do.

Proof. It is a general fact that given an exact sequence like this of abelian varieties then B is
isogeneous to A ˆ C. This probably follows from what Lucas said about decomposing abelian
varieties into simple components.
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